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A comparative, quantitativestudy of image compression techniques for use with digital particle image velocime-
try has been performed. Several candidate compression algorithms were selected for the study, including a lossless
technique and two mathematical transform-based methods. Each of the compression algorithms was implemented
using commercial off-the-shelf software packages. Three image sequences were selected to exercise the various
compression methods. These sequences included a set of industry standard images and two sets of images obtained
from experimental work conducted at NASA Langley Research Center. Evaluationof the various methods was ac-
complished using quantitativeperceptual and metrologicalperformancemeasures. The results of the study indicate
that several of the tested methods of compression are suitable for digitalparticle image velocimetry. A lossless LZ77
technique, coupled with pixel thresholding of image gray levels before compression, yielded excellent performance
in terms of compression level and negligible introduction of spatial errors to the images. A lossy JPEG algorithm
was shown to provide acceptable performance; however, signi� cant spatial errors and increased numbers of false
vectors derived from processing of the compressed images were observed at high compression levels. Finally, a
lossy wavelet algorithm was shown to provide excellent performance in terms of minimal introduction of spatial
errors and a reduction in the false vector rate over a wide range of compression levels.

Nomenclature
Btot = total bits in original image
QBtot = total bits in compressed image
Eu = spatial error estimate of individual u component

vector, % [see Eq. (8)]
Ev = spatial error estimate of individual v component

vector, % [see Eq. (8)]
f .i; j/ = intensity of i th, j th pixel of original image
f 0.i; j/ = intensity of i th, j th pixel of thresholded image
Qf .i; j/ = intensity of i th, j th pixel of compressed image

L g = maximum gray levels in image
M; N = number of horizontal and vertical pixels,

respectively, in image
m = decomposition levels in discrete wavelet

compression
P; Q = number of horizontal and vertical displacement

vectors, respectively
u.i; j/ = u displacement component obtained from

processed original image, pixels
Qu.i; j/ = u displacement component obtained from

processed compressed image, pixels
v.i; j/ = v displacement component obtained from

processed original image, pixels
Qv.i; j/ = v displacement component obtained from

processed compressed image, pixels
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¾Eu , ¾Ev = standard deviation of spatial error estimate
histograms

Á.x/ = recursive wavelet basis function [see Eq. (3)]

Introduction

D IGITAL particle image velocimetry (DPIV) has become an
accepted technique for the measurement of two- and three-

component planar velocities in a wide variety of � uid � ows, and
several good tutorials and reviews outlining advances in the state
of the art of the technique have appeared recently.1¡4 Over the past
severalyears, signi� cant improvementshavebeen achievedin DPIV
acquisitionhardwarewith the introductionof high-resolution,large-
format cameras that are capable of acquiring images at speeds in
excess of 10 frames per second.Associated with the introductionof
these new camera technologies, stereo DPIV systems that incorpo-
rate as many as four separate cameras5 have recentlybeendescribed
in the literature. With the increase in the number of cameras em-
ployed in these systems, as well as the increase in the pixel count
per camera, the issues of image storage and management become
relevant. For instance, the authors recently completed a series of
DPIV tests in the NASA Langley Subsonic Basic Research Tun-
nel that required the use of four separate 1300£ 1030 pixel cam-
eras connected to 8-bit digitizing frame grabbers. During four days
of testing, 32,800 separate images were acquired. These images
consumed approximately 41 GB of hard drive storage space and
were archived on 68 CD-ROM disks. For a typical turbulencestudy
where acquisition of several thousand images is required for a sin-
gle � ow condition, the total storage space needed for these images
can quickly become problematic. In addition, new technologiesare
forthcoming that will enable high-speed DPIV acquisition at rates
surpassing 1000 frames per second. The cost of storage media has
rapidly diminishedover the past decade; nevertheless,there remains
a need to achieve maximum ef� ciency in the archival and retrieval
of vast numbers of acquired images.

One establishedmethod for improving the ef� ciency of handling
large numbers of images involves compression of the image data
during storage.A large number of books and papers have been writ-
ten describing and contrasting various methods of image compres-
sion. Classically, studies characterizing the performance of various
compressionmethods have concentratedon qualitativemeasures of
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performance based on human visual perception, a perfectly accept-
able criteria given that a majority of image processing algorithms
are designed to provide outputs that are viewed by humans. With a
few exceptions (most notably astronomical imaging), less attention
has been paid to the consequences of using compressed images in
metrological applications such as DPIV. In particular, the effect of
image compressionon postprocesseddata accuracyhas not been ex-
tensivelyaddressed.BecauseDPIV technologyis now beingapplied
in numerous laboratory and industrial settings to collect large num-
bers of images, a few groups have begun to look at the implications
of using compressiontechniquesto reduce the storagerequirements
for DPIV data. Several papers describingtechniquescompatible for
use in DPIV acquisition have been presented in the literature over
the past two years. In particular, Li6 presented a good examination
of various wavelet methods in relation to DPIV image denoising
and information retention. Freek et al.7 examined the accuracy of
using JPEG compression on sequences of synthetic DPIV images.
Cenedese et al.8 examined using two different compression tech-
niques,namely, the JPEG algorithmand a lossless techniqueapplied
to binary versionsof the originalDPIV images.These studies repre-
sent advances in understanding the effects of applying image com-
pression to DPIV. However, a comprehensivestudy using a number
of quanti� able performance measures characterizing the measure-
ment uncertaintyin thedisplacementvectormapsderivedfromanal-
ysis of compressed DPIV images has not been performed.Also, the
implications for choosing a lossless vs a lossy, that is, loss of infor-
mation, compressionalgorithmhavenot been thoroughlyexamined.

To complement and extend the previous work given in Refs. 6–8,
a comparative yet quantitative study has been conducted of sev-
eral popular image compressiontechniques,both lossless and lossy,
with regard to their effect on the accuracy of DPIV-derived dis-
placement vector maps. Several key performance measures based
on compression rates, signal-to-noise levels, and spatial distortions
were chosen to evaluate each candidate technique. Three different
sequencesof DPIV images, two experimentallyobtainedand one an
industrystandard sequence,were chosen to exerciseeach candidate.
This paper presentsbrief descriptionsof the candidate compression
techniques, performance measures chosen to evaluate each candi-
date, and some representativeresults comparing the performanceof
the various techniques.

Candidate Compression Algorithms
This paper describesone lossless, one modi� ed lossless, and two

lossy image compressiontechniqueschosenfor this study.The loss-
less techniqueexaminedwas the Lempel–Ziv 77 (LZ77) dictionary-
based compressor (see Ref. 9). This algorithm was included in the
study to provide baseline lossless compression rates, as well as to
establish guidelines for determining when use of a purely lossless
technique may be preferable. The modi� ed lossless technique con-
sistedof the LZ77 algorithmcoupledwith gray level thresholdingof
the images before compression.This technique is somewhat similar
to that described by Cenedese et al. in Ref. 8. However, Cenedese
et al. created a binary image after thresholding, whereas the tech-
nique used for this study consists of a simple gray-level trunca-
tion technique that maintains an 8-bit image. The lossy techniques
that were examined are both based on mathematical transforma-
tion equations and include the discrete cosine transform and the
discrete wavelet transform. Each of these algorithms, implemented
for this study using commercial off-the-shelf software packages, is
described subsequently in more detail.

LZ77 Compression
The LZ77 lossless compressionalgorithm was � rst described by

Ziv and Lempel9 in 1977and is often referred to as a slidingwindow
codingalgorithm.Variationsof theLZ77 algorithmare incorporated
into popular programs such as PKZIP and LHarc.10 The algorithm
encodes incoming data by maintaining the last n bytes of the data
as a dictionarybuffer. The length of the buffer is user de� ned and is
typically � xed in the range of 2048–16,384 B. When an incoming
block of data matches part of the dictionarybuffer, three values are
sent to a compressed output � le (which also contains the dictionary
buffer), consistingof the matching position in the buffer, the match-

ing length, and the byte or character following the match in the
buffer. Compressed � les are reconstructed via a table look-up pro-
cedure using the dictionary buffer and pattern matching data. The
LZ77 algorithm provides for fast compression and decompression.
However, nontextualdata, for example, binary image � les, typically
cannot be compressed more than approximately 30% using LZ77
due to the relatively short matching sequences of bytes in the data.

To overcome the limited image compression capability of the
LZ77 technique, a modi� ed algorithm is proposed that couples the
LZ77 compressor to a thresholding process. Before compression,
image pixels are gray level thresholded using a simple truncation
formula:

f 0.i; j/ D
»

f .i; j/ if f .i; j/ ¸ threshold

0 otherwise (1)

where f .i; j/ representsthe i th, j th originalpixel valueand f 0.i; j/
represents the corresponding thresholded value. The bene� t of per-
forming this operation before compression derives from the struc-
ture of a typical DPIV image. Such images are composed of small
groups of illuminated pixels superimposed on essentially a black
background dominated by noise. By careful choice of the thresh-
old level, the background can be forced to zero, thereby increasing
the matching length between sequencesof pixels and the LZ77 dic-
tionary buffer. This can dramatically increase the compression rate
over using LZ77 alone. Although not a lossless technique in the
strict sense, the method can still be thought of as a pseudo lossless
technique.As will be seen, if the threshold level is carefullychosen,
increased compressioncan be achieved with no change in the accu-
racy of the DPIV processed vector displacement data as compared
with use of noncompressed images.

JPEG Compression
The Joint Photographic Experts Group (JPEG) compression

standard is the leading technique for use in numerous imaging
applications11 and is incorporated into a number of commercial
DPIV processing systems. The algorithm is based on the two-
dimensional discrete cosine transform (DCT) pair:
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where f .i; j/ represents the value of the i th and j th pixel in the
original image and DCT.x; y/ represents the corresponding image
transform coef� cient at a spatial frequency identi� ed by coordi-
nates x and y. The image f is assumed to be square in Eq. (2). The
popularity of the JPEG technique is partly due to the speed of the
algorithm; the DCT transformshown in Eq. (2) is separable, allow-
ing it to be ef� ciently implemented as a series of one-dimensional
fast Fourier transforms. This is accomplished by � rst performing a
one-dimensionaltransformof each pixel row in the image, followed
by a transform of each pixel column.

The DCT is applied to compress a monochrome image by � rst
breaking up the image into a series of nonoverlapping 8 £ 8 pixel
blocks.Each pixel block is independentlytransformed into the spa-
tial frequency (wave number) domain using the DCT. Because of
the small size of the pixel blocks, a very ef� cient table look-up im-
plementationof the DCT can be formed that dramatically improves
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performance of the algorithm. After converting each block to the
spatial frequency domain, the DCT coef� cients are represented in
integer form, and a coef� cient quantizer (implementedas a seriesof
multiplicative quantization matrices) is used to reduce the number
of bits required to store each coef� cient. The coef� cients are then
encoded using lossless run-lengthand entropy schemes. The use of
variable quantization matrices allows the user to specify easily the
amount of compression to perform, thereby providing a measure
of control over the resultant image quality. However, an overly ag-
gressive quantizationmatrix may cause severe degradation in com-
pressed image quality. As the number of bits required to store the
coef� cients is decreased,high wave number informationin the8 £ 8
pixel block is removed. The loss of too much information results
in a visible checkerboard pattern in the image, commonly referred
to as Gibb’s phenomenon. Gibb’s phenomenon is a major limiting
factor in application of high JPEG compression rates. In particu-
lar, for cases where a DPIV particle image crosses an 8 £ 8 pixel
block boundary (which is quite likely), Gibb’s phenomenon man-
ifests itself as a change in the spatial distribution of the particle
image during compression. This spatial change imparts an error to
the displacementvector derived from analysis of the particle image.

Wavelet Transform Compression
Wavelet-based image compression relies on performing a math-

ematical transformationof the original image, followed by a reduc-
tion in the storage size of the transform coef� cients. In a typical
discrete wavelet transform (DWT) analysis of an image, a set of
four complementary � lters is used to decompose the image into
four different components: approximation (A), horizontal detail
(HD), vertical detail (VD), and diagonal detail (DD). The approx-
imation image captures the low wave number information in the
image, whereas the detail images capture the high-wave-number
information along the horizontal, vertical, and diagonal directions.
The speci� c � lter coef� cients used in the decompositionare related
to the wavelet family used in the analysis. Wavelets are orthogonal
functions, and functionally the DWT is very similar to the discrete
Fourier transform (DFT) and DCT, which also incorporateorthogo-
nal transforming functions.The main difference between the DWT
and the DFT/DCT is in the characteristics of the basis functions
used. Whereas the DFT and DCT use sinusoids as basis functions,
the DWT uses a set of basis functions that are de� ned by the recur-
sive difference equation

Á.x/ D
J ¡ 1X

k D 0

CkÁ.2x ¡ k/ (3)

where J represents the number of nonzero coef� cients C in the
recursion. The most commonly used family of wavelets for image
compressionaretheDaubechieswavelets(seeRef. 12). In particular,
the Daubechies third-orderwavelet is suited for DPIV compression
because this function produces a satisfactory representation of an
idealizedone-dimensionalmodel of the gray level distributionmak-
ing up a particle image. Other commonly used wavelet families for
image compressionincludeCoi� ets and Baylkinwavelets. In Ref. 6,
Li presents a comparative study of these various families used for
DPIV compression.

After image decompositionby the use of a suitable wavelet fam-
ily de� ned by Eq. (3), each of the component images (A, HD, VD,
and DD) can be fully described using a number of wavelet coef-
� cients that is equal to one-quarter the size of the original image.
That is, after a one-step DWT analysis, the number of pieces of
information required to represent the original image fully is exactly
the same as before. However, if the information in the image is for
the most part localized in space, the majority of the detail wavelet
coef� cients should be negligible.Hence, most of these coef� cients
can be discarded without signi� cant loss of image � delity, result-
ing in a reduction in the amount of information needed to represent
the original image and, thus, achieving image compression. If all
of the detail coef� cients are approximately zero (when A contains
all of the relevant information) an information compression of one-
quarter is achieved. This represents the best attainable compression
using a one-step DWT approach. However, if one is to apply the

DWT analysis recursively on A up to an m-step DWT decomposi-
tion, it is easy to see that the best attainablecompressionrate (CR) is
given by

max.CR/ D 1
¯¡

1
4

¢m
(4)

Thus, in wavelet-based image compression, one may increase the
amount of compression by increasing the decomposition level m
and /or discarding more detail wavelet coef� cients.

In practice, it is not possible to discard all of the detail coef� -
cients to achieve maximum compression while at the same time
maintainingan acceptable image quality.Thus, the insigni� cant de-
tail wavelet coef� cients are determined and discarded using a user-
selectable threshold level. The easiest approach for setting such a
threshold is known as the global approach,where a single threshold
value is used for all detail images regardless of their DWT coef� -
cient level. In such a case, the threshold value is varied systemati-
cally until one achieves an acceptablebalance between the fraction
of coef� cients discarded and the retained image energy. However,
this method is subjective.A somewhat better approach is one where
the selected threshold value depends on the level of decomposition.
In this method, the threshold is typically selected as a fraction of
the largest detail wavelet coef� cient at each level, the median of the
wavelet coef� cients at the different levels, etc. Again, this method
is subjective and incapable of transparently adapting to different
types of images. Much of the research into improving the quality of
wavelet-based compressed images has concentrated on developing
new methods of choosing the best threshold for removal of detail
coef� cients.

The ability to thresholdwavelet coef� cientsover the complete set
of detail images provides an advantage over DFT- and DCT-based
techniques such as the JPEG algorithm because the DWT operates
over a rangeof spatialwave numbers. In otherwords, wavelet image
compression removes information from the image across multiple
spatial scales and, thus, should provide superior image quality at
higher compression rates relative to other techniques.

Compression Performance Measures
One of the challenges in conductinga comparative study of algo-

rithms for image compressioninvolvesthe selectionof performance
measures used to evaluate the results of the study. The image pro-
cessing communityhas traditionallyused threeprimarymeasuresof
performance for evaluating compressionalgorithms. The � rst mea-
sure is the CR and is de� ned as the ratio of the number of bits in the
original image to those in the compressed image:

CR D Btot= QBtot (5)

where Btot and QBtot are the total bits contained in the original and
compressed images, respectively. Obviously, as a higher compres-
sion rate is achieved,a smaller and, thus, more ef� cient compressed
image � le, is generated. The second measure, which is similar to
the compression rate is the bit rate, is de� ned as

bit rate D bits=pixel D QBtot=MN (6)

where M and N are the image pixel height and width, respectively.
The bit rate can also be used to determine the ef� ciency of an algo-
rithm, with a lower bit rate representinga more compact compressed
image � le. The third commonly used performance measure is the
peak signal to noise ratio (PSNR), de� ned as

PSNR(dB) D 10 log10

(
L2

g

,
1

MN

MX

i D 1

NX

j D 1

[ f .i; j/ ¡ Qf .i; j/]2

)

(7)

where Lg represents the maximum number of gray levels in the im-
age (256 for an 8-bit monochrome image), f .i; j/ represents the
i th, j th original image pixel value, and Qf .i; j/ represents the cor-
respondingcompressed image pixel value. The PSNR is commonly
used to provide an objective level of performance of the compres-
sion algorithm in terms of the � delity of the information retained in
the compressed image. It is commonly accepted that images with
PSNR levels above 32 dB are perceptually lossless. Nevertheless,
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Table 1 Image sequences evaluated

Horizontal Vertical
Sequence pixels pixels Image type Image density Flow

VSJ 3D standard 301 256 256 Single exposure, multiple frame 500–1000 Wall impinging jet
Impedance tube 1320 1035 Double exposure, single frame 1000–2000 Acoustic, zero-mean � ow
Separated � ow 1300 1030 Single exposure, multiple frame >5000 Separated � ow

the PSNR is not a suf� cient predictorof metrologicalerrors thatmay
be introduced to the compressed images. DPIV is a time-of-� ight
measurementtechniquewhere retentionof pixel spatial information
is equally important to retention of pixel amplitudes.Therefore, ad-
ditional performance measures need to be de� ned.

For this study, the authors chose to implement a spatial error es-
timate based on examinationof processeddisplacementvector data
obtained from original and compressed DPIV images. This perfor-
mance measure, which examines individual image displacements
on a percentage basis, can be de� ned by

Eu D
Qu.i; j/ ¡ u.i; j/

u.i; j/
£ 100:0

Ev D
Qv.i; j/ ¡ v.i; j/

v.i; j/
£ 100:0 (8)

By the use of Eq. (8), Eu and Ev are computed with respect to the
local u and v vector magnitudes over the entire ensemble of pro-
cesseddisplacementvectors.The resultsare presentedin the formof
a histogramrepresentinga vector percentagecount vs percent devi-
ation from the original displacementvector. For those compression
algorithms that preserve spatial integrity of the image, a histogram
formed using Eq. (8) should exhibit a narrow distribution centered
around 0% deviation. As spatial errors in the individual u and v
vector components increase (as would be expected if the compres-
sion rate were increased), the histogramwill broadenand/or become
nonsymmetric about 0% deviation. A quantitative measure of the
spreadof the Eu and Ev histogramscan be obtainedvia computation
of the standard deviation of the distributions, ¾Eu and ¾Ev

. These
values were computed and tabulated for all Eu and Ev histograms
obtained for this study.

The � nal performance measure used for this study is the DPIV
false vector rate (FVR), de� ned as the ratio of the number of false
vectors detected during validation of the vector � eld to the total
number of vectors processed:

FVR D #false vectors
PQ

(9)

The FVR is represented as a percentage and is computed for dis-
placement vector � elds obtained from both the original image
before compression (to obtain a baseline) as well as the image
after compression. Increases in the FVR due to compression ef-
fects are indicative of introduced spatial errors severe enough to
cause the DPIV processing algorithms to select an incorrect vector
magnitude and/or direction for one or more interrogation regions
in the compressed images. Thus, a signi� cant change in the FVR
is a critical indicator of large-scale errors introduced to the DPIV
displacement vector maps as a result of the compression process.

Image Sequences Chosen for Study
One industry standard image sequence and two sequences ob-

tained from DPIV facility applications at NASA Langley Research
Center were chosen to test the candidate compression algorithms.
Each sequence contains 20 single images or image pairs depending
on whether single or double exposed frames were acquired. Table 1
lists the relevant characteristicsof each sequence and Fig. 1 shows
a representative image from each sequence.

The industry standard sequencewas obtained from the Visualiza-
tion Societyof Japan (VSJ) throughtheir particle image velocimetry
(PIV) standard project.13 The VSJ standard images are fully docu-
mentedand publiclyavailable,providinga way for researchersin the
� eld to test and compare variousDPIV processingalgorithms.Each
image in the standard sequence contains 65,536, 8-bit pixels. The
sequence requires cross-correlationanalysis for processing,and the

VSJ industry standard sequence

NIT

Separated � ow

Fig. 1 Test sequence sample images.

images contain approximately 500–1000 particles per image.
The normal incidence impedance tube (NIT) sequence was ac-
quired in an acoustically driven, zero-mean � ow experiment
conducted at NASA Langley Research Center in 1998 (Ref. 14).
Each image in this sequencecontains1,366,2008-bit pixels.The se-
quence was acquired using single-frame, double-exposureimaging
and, thus, requires the use of autocorrelation analysis for process-
ing. Each image in the sequence contains approximately 1000–

2000 particles per image. Finally, a separated � ow image sequence
was recently acquired by Humphreys and Bartram in the NASA
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Langley Subsonic Basic Research Tunnel.15 Each image in this
sequence contains 1,339,000, 8-bit pixels. The sequence requires
cross-correlationanalysis for processing, and each image contains
greater than 5000 particles per image.

The choice of the three sequences listed in Table 1 was based
on several factors. First, it was desired to have three different par-
ticle image densities available because this tests the ability of the
image compression algorithms to handle various spatial frequency
ranges. In general, the greater the particle image density, the higher
the frequency content of the resultant images. It was also desir-
able to have various background noise levels available in the se-
quences. By examining the representative images shown in Fig. 1,
it can be seen that the VSJ sequence images are the cleanest in the
sense that there is very little backgroundnoise present as compared
with the other two sequences. Finally, it was desirable to have a
sequence contaminated with unwanted � are light as shown in the
separated � ow image in Fig. 1 where unwanted re� ections of laser
light were observed at the bottom of the image. This � are light can
be thought of as a low-frequency contamination superimposed on
the relatively higher-frequency content represented by the particle
images. This ensemble of image types provides the capability for
testing the candidate compression algorithms under a number of
realistic conditions.

Evaluation Procedure
Figure 2 is a � owchart showing the compression algorithm eval-

uation procedure that was adopted for this study. For each image

Fig. 2 Compression algorithm evaluation procedure.

Table 2 Auto-/cross-correlation processing parameters

Interrogation Interrogation Peak Image
Sequence size, pixels size overlap, % detection threshold

VSJ 3D standard 32 £ 32 50 Parabolic � t 150
301

NIT 128£ 128 50 Parabolic � t 150
Separated � ow 64 £ 64 50 Parabolic � t 150

or image pair in the three test sequences, an initial auto- or cross-
correlation analysis and validation were performed to derive the
baseline displacementvector map and FVR information needed for
subsequent processing. The auto- and cross-correlationprocessing
routineswere written by the authorsand are basedonclassicalDPIV
spatial analysis techniques as described by Raffel et al. in Ref. 1.
Table 2 lists parametersused to process each of the sequences. Iden-
ti� cation and tabulationof false vectors present in the displacement
vectormaps were performedusing magnitudedifferencealgorithms
contained in the CleanVec validation system developed by Soloff
and Meinhart16 at the Laboratoryfor Turbulenceand Complex Flow
at the University of Illinois at Urbana–Champaign. Once the base-
lineanalysisfor an imagewas completed,the imagewas compressed
using a candidatealgorithm and the compressionand bit rates com-
puted using Eqs. (5) and (6). The image was then decompressed,
and Eq. (7) was used to compute the PSNR. Decompressed images
were analyzed and validated using identical processing parameters
employedto analyzetheoriginalimages.Note that identicalprocess-
ing must be done on both the original and decompressed images to
remove any in� uences on the displacementvectors other than those
introduced by the compression algorithm. After processing, false
vectors identi� ed during the validation step were removed from the
original and decompressed vector maps, the FVR was computed
using Eq. (9), and Eqs. (8) were used to compute the Eu and Ev

histograms. The removal of false vectors before computation of
the histograms ensures that any spatial errors that are detected are
generated by valid vectors only. This is a reasonable step because
the presence of invalid vectors would result in distorted histogram
functionsgiventhat erroneousvectorstypicallydeviatesubstantially
from valid ones.

Sample Results and Discussion
LZ77 Results

Six different gray-level thresholds spanning a range from 0 to
150 out of 256 gray levels were chosen for the LZ77 evaluation.A
threshold of zero results in implementation of the standard LZ77
algorithm. For each test sequence, 20 images or image pairs were
thresholded using Eq. (1) and compressed. The images were then
decompressedand processedin accordancewith the proceduresout-
lined earlier, and the results were averaged.Table 3 lists the average
bit rates, FVR, the PSNR levels, and the ¾Eu and ¾Ev values for this
portion of the study.

Figure 3 illustrates the bit rate and PSNR level vs applied thresh-
old. It is immediately evident from examination of the results in
Table 3 and the graphs in Fig. 3 that thresholding an image be-
fore compression dramatically reduces the bit rate due to removal
of background noise. The VSJ and NIT sequences experienced the
lowestbit ratesas the thresholdwas increased,whereasthe separated
� ow sequence showed bit rates approximately three times as high.
This is not surprising given that the VSJ and NIT sequences have
lower particle image densities and, thus, more open background
areas. A lower density allows more of these background areas to
be zeroed out during thresholding, increasing the matching lengths
between the LZ77 dictionary buffer and sequences of bytes in the
image, thus reducing the compressed image size.

An interesting result is seen in Table 3 in the FVR values. Al-
though there is a dramatic decrease in the PSNR level for each
sequence as the bit rate is reduced, the effect on the accuracy of
the processed displacement vector maps is negligible, even at the
highest compressionlevels. There is no change in the FVR between
the baseline and compressed results, and no discernable difference
is observed in the vector maps. The reason for this insensitivity to
threshold level stems from the construction of the DPIV auto- and
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Table 3 Results of LZ77 compression tests

Bit rate, Baseline PSNR,
Threshold bits/pixel FVR, % FVR, % dB ¾Eu , % ¾Ev , %

VSJ 301
0 5.48 0.98 0.98 In� nity 0.00 0.00
50 2.27 0.98 0.98 57.28 0.00 0.00
75 1.63 0.98 0.98 49.46 0.00 0.00
100 1.17 0.98 0.98 44.16 0.00 0.00
125 0.82 0.98 0.98 40.31 0.00 0.00
150 0.54 0.98 0.98 38.10 0.00 0.00

NIT
0 5.61 0.47 0.47 In� nity 0.00 0.00
50 5.11 0.47 0.47 64.62 0.00 0.00
75 2.69 0.47 0.47 34.02 0.00 0.00
100 1.21 0.47 0.47 28.32 0.00 0.00
125 0.78 0.47 0.47 26.93 0.00 0.00
150 0.58 0.47 0.47 26.42 0.00 0.00

Separated � ow
0 5.64 8.88 8.88 In� nity 0.00 0.00
50 4.69 8.88 8.88 52.88 0.00 0.00
75 3.65 8.88 8.88 40.12 0.00 0.00
100 2.83 8.88 8.88 34.04 0.00 0.00
125 2.13 8.88 8.88 29.03 0.00 0.00
150 1.51 8.88 8.88 26.20 0.00 0.00

a) Bit rate vs image threshold level

b) PSNR vs bit rate

Fig. 3 LZ77 compression results.

cross-correlationprocessingalgorithms where a thresholdingof in-
dividual interrogationregions in the image is performedbeforecom-
puting the correlationfunctions.As can be seen from the parameters
shown in Table 2, the threshold level in the processingsoftware was
maintained at a value of 150. As long as the threshold level in the
LZ77 algorithmwas keptbelowthe thresholdlevel in the processing
software, no degradation in the resultant displacement vector maps
appeared. In fact, if the image and processing threshold levels are

the same, the velocity errors (Eu and Ev/ caused by compressing
the images are zero. This can be seen in Table 3, where the ¾Eu and
¾Ev values obtained from the velocity errors are zero. On the other
hand, if the compressionthresholdis increasedbeyondthat set in the
processing software, then increases in the FVR are expected to ap-
pear. Thus, when applying LZ77 compression with thresholding to
DPIV images, a parametric study should be conductedto determine
the optimal balance between compression threshold level and rate
to maintain negligible errors in the processed displacement vector
maps. For those applications where thresholding of interrogation
regions cannot be performed during processing, it is advisable to

Table 4 Results of JPEG compression tests

Compression Bit rate, Baseline FVR, PSNR,
level bits/pixel FVR, % % dB ¾Eu , % ¾Ev , %

VSJ 301
1 2.06 0.98 1.21 49.19 12.34 3.97
2 1.32 0.98 1.60 44.43 14.71 5.64
3 0.92 0.98 2.21 41.51 16.21 6.82
4 0.79 0.98 3.42 40.51 17.00 7.82
5 0.72 0.98 3.22 39.72 16.56 8.05

NIT
1 1.43 0.47 0.48 44.59 7.42 0.66
2 0.83 0.47 0.48 44.59 7.42 0.66
3 0.54 0.47 0.38 42.04 8.70 0.89
4 0.46 0.47 0.58 41.09 9.24 0.87
5 0.42 0.47 0.53 40.38 9.65 1.26

Separated �ow
1 1.42 8.88 9.47 37.83 7.45 9.06
2 0.86 8.88 10.47 34.56 8.24 10.24
3 0.58 8.88 11.37 32.34 9.36 11.39
4 0.49 8.88 11.70 31.50 9.80 12.23
5 0.46 8.88 12.33 30.86 10.23 12.34

a) PSNR vs bit rate

b) Change in FVR vs bit rate

Fig. 4 JPEG compression results.
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choose one of the lossy compression techniques examined in this
study. Alternately, the LZ77 algorithm can be applied alone, at the
expense of higher bit rates in the compressed images.

JPEG Results
Five different compression levels ranging from 1 to 5 were cho-

sen for the JPEG evaluation, with level 1 representing the least
compression and level 5 representing the highest. In a manner sim-
ilar to that employed for the LZ77 evaluation, 20 images or image

VSJ sequence Eu

VSJ sequence Ev

NIT sequence Eu

NIT sequence Ev

Separated � ow sequence Eu

Separated � ow sequence Ev

Fig. 5 Representative JPEG compression error histograms, compression level 5.

pairs in each sequencewere compressedand processed.Table 4 lists
the averagebit rates, FVRs, PSNR levels, and the ¾Eu and ¾Ev

values
for this portion of the study.

Figure 4a shows the PSNR level as a functionof the bit rate using
JPEG compression.With the exceptionof the NIT sequence (which
exhibits a � attening of the PSNR above 0.8 bits/pixel), the PSNR
levels decrease uniformly as the bit rate is reduced. The majority of
the PSNR levels are greaterthan 32dB, indicativeof little perceptual
degradationin the images.This is unlike the PSNR resultspresented
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earlier in Fig. 3b for LZ77 compression. In particular, when using
LZ77, both the NIT and separated � ow sequences exhibit PSNR
levels that are below30 dB for the same bit rate rangeas that covered
in Fig. 4a. This suggests that, for these two sequences, more pixel
values are changed by the LZ77 algorithm than by JPEG compres-
sion at small bit rates. It is possible that this is caused by the use of
a threshold in the former technique,which resets all pixel values in
the background to zero regardless of their wave number content.As
discussedearlier, both the NIT and separated� ow sequenceshave a
more noisy backgroundcontaining larger pixel values than the VSJ
sequence (which has comparable PSNR values in Figs. 3b and 4a).
Therefore, the pixel values in the background of the NIT and
separated-�ow images will be affected substantiallyby the use of a

VSJ standard sequence

NIT

Separated � ow

Fig. 6 Representative JPEG compressed images, compression level 5.

threshold.This could cause a reduction in PSNR without adversely
affecting the interrogated velocity vectors.

Figure 4b depicts the change in FVR as a function of bit rate.
In general, for bit rates of 1 bit /pixel and above, less than a 1%
change is noted in the FVR. Below 1 bit /pixel, the FVR starts to
increase in the VSJ and separated � ow sequences, with the change
in FVR reaching from 2.5 to 3.5% for the lowest bit rates. The NIT
sequence displays excellent stability in the FVR across the entire

Table 5 Results of wavelet compression tests

Compression Bit rate, Baseline FVR, PSNR,
level bits/pixel FVR, % % dB ¾Eu , % ¾Ev , %

VSJ 301
1 3.59 0.98 0.53 39.99 14.47 5.53
2 1.89 0.98 0.63 40.37 14.63 5.49
3 0.80 0.98 0.86 39.48 15.32 7.87
4 0.40 0.98 3.54 36.81 19.20 13.76

NIT
1 4.04 0.47 0.38 50.67 5.55 0.69
2 1.96 0.47 0.38 50.12 5.71 0.71
3 0.78 0.47 0.45 46.19 6.50 0.75
4 0.40 0.47 0.48 41.50 9.07 1.04

Separated �ow
1 4.00 8.88 6.76 38.60 7.78 9.42
2 1.93 8.88 6.75 37.45 7.95 9.46
3 0.81 8.88 7.40 33.69 8.58 10.34
4 0.40 8.88 8.57 30.80 9.81 12.44

a) PSNR vs bit rate

b) Change in FVR vs bit rate

Fig. 7 Wavelet compression results.
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range of bit rates employed in the evaluation.It is suspected that the
excellent FVR trend shown for the NIT sequence is related to the
use of autocorrelationanalysis for the images. The autocorrelation
analysisalgorithmdevelopedby the authorsuses a restrictivesearch
box for the correlationpeak that may mitigate the generationof false
vectors, even at low compressionbit rates. The other two sequences
examined for this study utilized cross-correlation analysis, which
does not employ a search box. The FVR trends for the VSJ and
separated� ow sequencesare superimposedononeanotherin Fig. 4b
with the NIT results appearing noticeably lower.

VSJ sequence Eu

VSJ sequence Ev

NIT sequence Eu

NIT sequence Ev

Separated � ow sequence Eu

Separated � ow sequence Ev

Fig. 8 Representative wavelet compression error histograms, compression level 4.

Spatial errors introduced by the JPEG compression algorithm
can be examined through the formation of Eu and Ev histograms
using Eq. (8). Figure 5 displaysa series of representative Eu and Ev

histograms for a compression level of 5. Several observations can
be made from an examinationof these histograms and the resultant
standarddeviationslistedin Table4. First, the shapeof thehistogram
distributiondepends greatly on the type of DPIV image being com-
pressed.For the VSJ and NIT sequences, the Ev histograms display
a much more narrow distribution than the Eu histograms. This is
to be expected, because the Eu and Ev functions given in Eq. (8)
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are normalized by the local u and v vector displacement compo-
nents. Thus, the functions are sensitive to the predominant � ow
direction.For the VSJ and NIT sequences, the predominant� ow di-
rection is aligned along the v direction, making local v components
much larger than correspondingu components. On the other hand,
the separated � ow sequence contains highly variable local u and v
componentsand, thus, displaysmore balanced Eu and Ev histogram
distributions.The Eu and Ev functions could be normalized by the
displacement vector magnitude; however, this would result in the
generation of much more narrow distributions, which would make
it harder to detect subtle changes in distribution shape. The use of
localu and v componentsfor normalizationmakes these histograms
more useful in the present study in that they allow a better exami-
nation of changes as various compression levels or algorithms are
employed.

Figure 6 shows representativecompressed images from the three
sequences for a JPEG compression level of 5. Perceptual changes
can be detected in the VSJ image as comparedwith the correspond-
ing original image shown in Fig. 1. Similar changesare much harder
to detect in the NIT image, whereas in the separated � ow image,
degradationof the image is most easily seen in the backgroundarea
located at the top of the image. Visual differences in the images
were reduced dramatically as the compression level was decreased
from level 5 to level 1.

Wavelet Results
Four different compression levels were chosen for the wavelet

evaluation, with level 1 representing the least compression and
level 4 the highest. In a similar manner to the LZ77 and JPEG evalu-
ations,20 images or image pairs in each sequencewere compressed
and processed. Table 5 lists the average bit rates, FVRs, PSNR lev-
els, and the ¾Eu and ¾Ev values for this portion of the study.

Figure 7a illustrates the change in PSNR level as the bit rate is
reduced. Compared with the results shown in Fig. 4a for the JPEG
algorithm,the wavelet compressionproducesremarkablyconsistent
PSNR levels, with degradation of the PSNR only occurring for bit
rates below1 bit /pixel.This trend is consistentwith the natureof the
wavelet algorithm; the DWT removes information from the image
across a range of wave number scales and, thus, does a better job of
preserving image features such as edges, dots, etc., at higher com-
pression rates. A similarly consistent trend can be seen in Fig. 7b,
which depicts the change in FVR as a function of bit rate. The FVR
is very consistent above bit rates of 1.5 bit /pixel and actually indi-
cates a reduction in the FVR, in comparison to the uncompressed
image results, for bit rates above 0.5 bit /pixel. The reason for this
decrease can probably be attributed to the denoising effect that the
DWT imparts to the images, an effectmentionedby Li in Ref. 6. The
separated � ow sequence would be most sensitive to any denoising
becauseit containsthe highest levelsof backgroundand particle im-
age noise among the three sequences and, indeed, from examining
Fig. 7b, this sequence shows the largest reduction in the FVR. Also
note that the Fig. 7b results,when compared to Fig. 4b, demonstrate
that the use of wavelet compressionprovides less false vectors than
JPEG. This is particularly true for the VSJ and separated � ow se-
quences.On the other hand, the FVR for the NIT sequenceseems to
be practically unaffected regardless of which of the two compres-
sion techniques is used. This is believed to be caused by the fairly
restrictivepeak search box used with the autocorrelationanalysisof
the NIT sequence images.

Figure 8 displays a series of representative Eu and Ev histogram
functions for each of the three image sequences for a wavelet com-
pressionlevelof 4. In general,thehistogramdistributionsfor theNIT
and separated� ow image sequencesare very similar to those shown
for the JPEG evaluation. However, the VSJ image sequence shows
a much broader Eu distributionand a slightly larger Ev distribution
over the JPEG results. For reasons unknown, the Ev distribution
for this sequence also appears to be slightly bimodal in structure,
with a small peak occurring at between 20 and 50% deviation.The
reason for the broadening of the distribution can be explained via
an examination of the wavelet compressed images shown in Fig. 9.
The VSJ image shown in Fig. 9 is perceptivelymore distorted than
the other two images for similar compression bit rates. The rea-

VSJ standard sequence

NIT

Separated � ow

Fig. 9 Representative wavelet compressed images, compression level 4.

son for the increased distortion in the VSJ image is unclear but
may be related to the wave number scales appearing in the im-
age; the wavelet compressionalgorithm appears to have performed
a poor job of thresholding the detail coef� cients for this particular
sequence.Based on these results, it appearsthewavelet compression
technique, in general, outperforms the JPEG algorithm; however, it
is advisable to conduct test runs using various wavelet compression
rates to determine the optimal bit rate to use for a particular class of
image.

Summary
Based on the resultsof this study, there are severalcandidatealgo-

rithms that may be successfully applied to compress DPIV images
with minimal error. For those applications where thresholding of
individualDPIV interrogationregions can be performedbefore cor-
relationfunctionsare formed, it is possibleto achievecompressedbit
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rates of less than 1 bit /pixel with no degradation of the processed
vector maps by using the LZ77 algorithm. For those applications
where thresholdingcannot be performed, the wavelet compression
algorithm, in general, yields the best performance in terms of im-
parting negligible increases in the FVR (in some cases actually
decreasing the rate) and imparting negligible increases in the Eu

and Ev histograms. However, depending on the spatial wave num-
ber content of individual images, test cases need to be examined
when using wavelet compressionto ensure that the proper detail co-
ef� cient thresholds are selected, thus minimizing spatial errors. If a
modest increase in the FVR can be tolerated, then compressed bit
rates of 0.5–2 bits/pixel can be achieved using JPEG compression.
Regardless of the type of compression algorithm contemplated for
use with DPIV, it is advised that test images be compressed and
processed and that any errors due to the algorithm be identi� ed be-
fore replacingthe original images with compressedones duringdata
archiving.
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