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The Richtmyer–Meshkov instability (RMI) is experimentally investigated in a vertical
shock tube using a broadband initial condition imposed on an interface between a
helium–acetone mixture and argon (Atwood number A ≈ 0.7). In the present work,
a shear layer is introduced at the interface to serve as a statistically repeatable,
broadband initial condition to the RMI, and the density interface is accelerated by
either an M = 1.6 or M = 2.2 planar shock wave. The development of the ensuing
mixing layer is investigated using simultaneous planar laser-induced fluorescence
(PLIF) and particle image velocimetry (PIV). PLIF images are processed to reveal
the light-gas mole fraction, while PIV particle image pairs yield corresponding
two-component planar velocity results. Field structure and distribution are explored
through probability density functions (PDFs), and a decomposition is performed on
concentration and velocity results to obtain a mean flow field and define fluctuations.
Simultaneous concentration and velocity field measurements allow – for the first time
in this regime – experimentally determined turbulence quantities such as Reynolds
stresses, turbulent mass-flux velocities and turbulent kinetic energy to be obtained.
We show that by the latest times the mixing layer has passed the turbulent threshold,
and there is evidence of turbulent mixing occurring sooner for the higher Mach
number case. Interface measurements show nonlinear growth with a power-law fit
to the thickness data, and that integral measurements of mixing layer thickness are
proportional to threshold measurements. Spectral analysis demonstrates the emergence
of an inertial range with a slope ∼k−5/3 when considering both density and velocity
effects in planar turbulent kinetic energy (TKE) measurements.

Key words: instability, transition to turbulence, turbulent mixing

1. Introduction
The Richtmyer–Meshkov instability (RMI) (Richtmyer 1960; Meshkov 1970)

occurs when a shock wave passes through the interface between two fluids of

† Present address: National Institute of Aerospace, Hampton, VA 23666, USA. Email address
for correspondence: daniel.reese@nasa.gov
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different density. The impulsive acceleration will cause the growth of any perturbations
present at the interface, and the development of the resulting instability is governed
by the vorticity transport equation,

Dω

Dt
=

1
ρ2
(∇ρ ×∇p)+ (ω · ∇) u−ω (∇ · u)+ ν∇2ω, (1.1)

where ρ is the density, p is the pressure, ν is the viscosity, u≡ (u, v,w) is the velocity
vector and ω≡∇×u is the vorticity. The first term on the right-hand side is called the
baroclinic production term, and leads to a production of vorticity when ∇p×∇ρ 6= 0.
The second term on the right-hand side is the vortex stretching term; it represents
the enhancement of vorticity by stretching and is only present in three-dimensional
flows. Vortex stretching is the mechanism by which turbulent energy is transferred to
smaller scales. The third term on the right-hand side of (1.1) is the expansion term.
In an expanding flow, ∇ · u> 0, resulting in a decrease in the magnitude of vorticity,
whereas if the fluid is under compression, ∇ ·u<0, and vorticity will increase. Finally,
the last term on the right-hand side of the equation is the diffusion term; this term
describes the effects of viscous diffusion on the vorticity distribution.

Following passage of the shock wave, the growth of perturbations on the interface is
initially linear in time. As the instability develops and the amplitudes of perturbations
become large (comparable to the wavelength of the perturbation), their growth
becomes nonlinear, and a turbulent mixing zone develops between the two fluids
at late times. This instability occurs over a large range of both time and length
scales and is responsible for mixing in a wide variety of natural phenomena. At
the largest of scales, the RMI presents itself during the supernova explosion of a
dying star (Kane, Drake & Remington 1999) and is responsible for the appearance
of stellar core elements at earlier-than-predicted times (Arnett 2000). At the smallest
of scales, the RMI manifests itself as a destructive mixing mechanism in inertial
confinement fusion (ICF) experiments (Lindl et al. 2004). When maintaining perfect
spherical symmetry is of the upmost importance, the RMI wreaks havoc as the
mechanism for mixing of the deuterium–tritium (DT) fuel and the outer ablator
layer, causing contamination of the fuel source and inhibiting thermonuclear burn.
Between the largest and smallest of scales, the RMI could play a crucial role in
scramjet engines as this instability may enhance fuel–oxidizer mixing in supersonic
combustion applications (Marble, Hendricks & Zukoski 1987).

A theoretical prediction for the RMI was first provided in 1960 when Richtmyer
(1960) modified work by Sir G. I. Taylor (1950) to describe the evolution of an
impulsively accelerated interface. In particular, he replaced the constant acceleration
term in Taylor’s analysis with an impulsive one. In this way, the RMI can be
considered the impulsive-acceleration limit of the Rayleigh–Taylor instability (RTI);
however, unlike the RTI, the interface will be RMI unstable regardless of the
direction of acceleration. Early experiments were conducted by Meshkov (1970)
in an effort to test if experimental data supported theory. These experiments were
conducted on single-mode interfaces in a horizontal shock tube for a variety of
Mach numbers as M ∼ 1.25–1.5, and ultimately confirmed Richtmyer’s theory.
Later experiments by Andronov et al. (1976) used high-speed schlieren to extend
the studies to multimode interfaces using nominally flat membranes with small,
random perturbations. Multimode experiments using membranes to separate gas pairs
continued for decades, including the influential work of Vetter & Sturtevant (1995).
In these studies, a nitrocellulose membrane rested on a wire mesh, separating SF6
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and air. This mesh had 10 mm spacing between wires, allowing for small-scale
perturbations of the membrane, as well as an imposed large-scale perturbation on the
order of the shock tube width. This allowed for a ‘two-scale perturbation’, that has
served as the basis of a number of numerical studies. Cohen et al. (2002) performed
numerical simulations of this work, employing simplified piecewise-parabolic method
(sPPM) simulations with varying mesh sizes to explore the importance of resolution
for computational results. A similar code was used by Grinstein, Gowardhan &
Wachtor (2011) at lower resolutions (up to 1640 × 4802). Hill, Pantano & Pullin
(2006) used large-eddy simulations (LES) techniques with a fifth-order weighted
essentially non-oscillatory (WENO) scheme. Finally, Schilling & Latini (2010) used
a ninth-order WENO scheme. All of these simulations showed agreement with the
experimental post-reshock growth rate, which was found to be relatively insensitive
to the resolution of the numerical simulations.

Eventually, experiments using membranes and schlieren imaging gave way to
membraneless interfaces visualized using planar imaging techniques. These later
studies were no longer reliant on integrated diagnostics nor influenced by the
presence of a membrane within the flow, and more modern diagnostics used in these
studies allowed for the collection of higher fidelity data. Methods used to create
a membraneless interface include gas curtains (Prestridge et al. 2000), retractable
plates (Brouillette & Sturtevant 1994) and stagnation planes (Jones & Jacobs 1997).
The current work aims to better understand shock-induced turbulent mixing by
performing hydrodynamic experiments characterizing the RMI in a shock-accelerated
shear layer, as used by Weber et al. (2012, 2014). The experiments detailed in the
present studies allow for concentration and velocity to be obtained at the initial
condition (IC) and four post-shock times (PS1-PS4) using simultaneous planar
laser-induced fluorescence (PLIF) and particle image velocimetry (PIV) measurements.
This technique has been used previously to extract concentration and velocity from
a shocked heavy-gas curtain, and results were used to determine the effect of the
initial condition on turbulent mixing (Balasubramanian, Orlicz & Prestridge 2013),
the effects of reshock (Balakumar et al. 2012) and to give insight into the mixing
transition of variable-density flows (Orlicz et al. 2015). However, while these studies
employed simultaneous PIV and PLIF measurements, the aforementioned experiments
are inherently different from the present work as the gas-curtain set-up provides a
two-interface initial condition, which was accelerated by a shock wave with a lower
Mach number than was used in the research outlined in the present work. Recent
studies conducted at Georgia Institute of Technology have also utilized simultaneous
PIV and PLIF to make measurements of shock-driven, variable-density flows. The
work of Mohaghar et al. (2017) focused on both single-mode and multi-mode
interfaces at an inclined angle to the shock wave. These studies report many of
the same turbulence quantities discussed in the present work, though the experiments
at Georgia Tech employ a lower Mach number shock to accelerate the interface, as
well as a gas pair yielding a lower Atwood number than was used in the experiments
described in this manuscript.

This paper begins with a detailed description of the interface creation and
experimental set-up in the next section. Section 3 discusses the data processing
techniques used to correct PLIF images to give concentration fields, obtain velocity
fields from PIV particle image pairs, match concentration and velocity fields by
accounting for scaling, rotation and a two-dimensional translation, as well as
decompose fields into mean and fluctuating components. Results and a discussion of
field structure and distribution, mixing layer thickness, density self-correlation, energy
spectra, Reynolds stresses and Reynolds number are given in § 4. Finally, the research
is summarized and conclusions are highlighted in § 5.
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2. Experimental set-up
Experiments of once-shocked RMI were conducted in the Wisconsin Shock Tube

Laboratory (WiSTL). This facility is equipped with a 9.13 m, vertical shock tube
comprised of a circular driver section of 47 cm diameter and a square driven section
with 25.4 cm sides (Anderson et al. 2000). The two sections are initially separated by
a 16-gauge steel diaphragm, which is burst by over-pressurizing the driver, creating
a shock wave. This shock wave travels downward into the driven section where it
accelerates a broadband, shear-layer interface. Embedded within the inner walls of
the driven section are 12 piezoelectric pressure transducers placed along the length
of the tube that are used to collect pressure readings as well as trigger the cameras
and lasers used for diagnostics. A schematic of the experimental set-up used for the
current studies is shown in figure 1.

Creating the initial condition used in the present work is a multi-step process.
First, the driver and driven sections are evacuated to a pressure below 20 kPa
in order to remove air and any other gas impurities from the shock tube. The
driver section is filled to ∼90 % of the diaphragm rupture pressure while the initial
condition is created. A gravitationally stable stagnation plane is then created in the
driven section by flowing a light gas (helium seeded with ∼7 % acetone by volume)
from the top of the tube and a heavy gas (pure argon) from the bottom while
continuously evacuating excess gas through slots on the tube wall at the interface
location. The flow is maintained for several minutes to ensure that all remaining air
and impurities have been cleared from the tube. This gas pair has an Atwood number
A ≡ (ρ2 − ρ1)/(ρ2 + ρ1) = 0.7, where ρ1 and ρ2 are the densities of the two gases.
This method of creating a flat, membraneless interface is similar to that developed for
the University of Arizona shock tube (Jones & Jacobs 1997) and has been previously
used in the WiSTL (Motl et al. 2009; Weber et al. 2012, 2014; Reese et al. 2014).

After the stagnation plane has stabilized, a statistically repeatable, broadband, shear-
layer initial condition is set-up by injecting each gas horizontally through slots located
on the shock tube side wall at the interface, 2 m above the bottom of the tube. Gas
injection through the slots is sustained for the remainder of the experiment, and excess
gas is continually removed by vacuum through a second set of slots on the wall
opposite the gas-injection slots to maintain atmospheric pressure inside the shock tube.
Details of the slot geometry and flow conditions used to establish the initial condition
are given in figure 2. The light gas is flowed from the bottom set of slots while
the heavy gas is flowed at a higher rate from the top set of slots; this mismatch
of flowrates establishes the shear layer. The unstable density configuration used in
creating the initial condition was chosen due to the more broadband generation of
scales from the Rayleigh–Taylor unstable nature of the gas injection at the slots. There
are a number of important properties of this interface to be considered. First, we
note that this method of slot injection from the shock tube side wall creates a three-
dimensional shear layer that can never be identically reproduced. However, this initial
condition has been shown by Weber (2012) to be statistically repeatable in terms
of spectral content. It also provides a reliable method of creating a membraneless
interface containing a large range of scales (Weber et al. 2012).

Ultraviolet light (308 nm) from a pulsed XeCl excimer laser (Lambda Physik
LPX 210i; 430 mJ pulse−1) is formed into a sheet and used to excite the acetone
present in the helium gas for use in planar laser-induced fluorescence (PLIF) imaging.
Fluorescence from the acetone is captured on a thermoelectrically cooled (to 218 K)
CCD camera (Andor model DV434-BU2), using a 50-mm Nikon lens ( f /1.2). Two
filters are placed in front of the lens: a bandpass filter centred at 470 nm with
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Driver section

Driven section

IC

PS1

PS2

PS3

PS4

PIV seeders

Initial condition PIV
camera and filters

Post-shock PIV
camera and filters

Post-shock PLIF
camera and filters

Initial condition PLIF
camera and filters

Excimer
laser

Double-pulse
Nd:YAG laser

Beam-combining and
sheet-forming optics

Ball valve

Argon
supply

Helium
supply

Driver
supply

High pressure
boost tanks

FAV 1 FAV 2

Rotameter

Rotameter

Excess acetone
collection chamber

in cooling bath

Liquid acetone
bubbler in heat

bath

FIGURE 1. (Colour online) Schematic of the vertical shock tube at the Wisconsin
Shock Tube Laboratory showing the experimental set-up for simultaneous PIV and PLIF
measurements of an impulsively accelerated interface.

a full-width half-max of 271 nm, and an ultrasteep short-pass filter only allowing
passage of signal below 524 nm. This combination of filters ensures that only
fluorescence signal from PLIF was captured by the Andor sensor.

For the PIV measurements, TiO2 particles with a nominal diameter of 300 nm are
seeded into both gas cross-flows used to create the initial condition shear interface,
and into the regions immediately above and below the interface. These particles
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Ar

He + acetone

g

FIGURE 2. One side of the shock tube has two slots, each 3.2 mm high and separated
by 12.7 mm, spanning the depth of the shock tube to allow two jets of gas to disrupt
the stagnation plane. The average velocities of the jets are: argon 0.35 m s−1 and
He + acetone 0.25 m s−1. The opposing side of the shock tube has a slot spanning the
depth allowing the mixed gases to exit.

allow for the Mie scattering of the second harmonic output (532 nm) of a dual-head,
flashlamp-pumped Nd:YAG laser (Ekspla model NL303D; 460 mJ pulse−1). Using
a series of optics, a laser sheet is formed for use in planar laser imaging, and
allows for cameras to capture particle images with a ∼20 × 25 cm field of view.
Post-shock image pairs are captured with a 29 MP interline image transfer camera
(TSI Inc. model 630094) using a 4 µs inter-frame time, while initial condition image
pairs are taken with the same camera, but using an inter-frame time of 1 ms. The
inter-frame times are chosen to compensate for the vastly different interface velocity
fluctuations before and after acceleration by the shock wave. These timings also allow
for the final search box used in PIV to be reduced in order to obtain a large number
of velocity vectors, yielding finer spatial resolution of velocity while maintaining
sufficient displacement of the particles.

Once the shear interface has stabilized and is properly seeded with both acetone
and TiO2 particles, ten initial condition images are taken and a pair of fast-acting
valves (FAVs) allows high pressure gas from a pair of boost tanks to enter the driver
section. This driver supply gas is nitrogen for the M = 1.6 case, and helium for the
M = 2.2 case. The over-pressurized driver causes the diaphragm to rupture, which
creates the downward-travelling shock wave. Following shock acceleration of the
initial condition, the interface is imaged at four different post-shock times in the
development of the RMI. A summary of the post-shock locations and times (as well
as non-dimensional times, see (4.4)) is given in table 1. For each Mach number,
20 experiments are conducted at every post-shock time (yielding a total of 160
post-shock data sets) to allow for ensemble averaging of results to obtain converged
statistics from concentration and velocity data.

Although it would be desirable to have data at the same non-dimensional time for
any M, it would require continual optical access which is not possible for structural
purposes at the reported shock strengths. Therefore, imaging is performed at discrete
locations and the comparison of the two M, either in dimensional or non-dimensional
time, is not one to one. Comparing the two M is still possible when looking at trends
that evolve with time, be they integral measures such as mixing layer thickness or
fluctuations relevant to turbulence. When discussing results in this paper, the notation
PS1-4 will be used even though these more correctly refer to spatial locations in the
shock tube relative to the initial interface position. We refer to early time, such as PS1,
and late time, such as PS4, and these labels are strictly in the context of this paper
and the data presented. Admittedly, particularly for numerical simulations where there
is no physical limit to constrain the times when data can be taken, what is referred
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M = 1.6 M = 2.2
Distance from IC (m) Time (ms) τ Time (ms) τ

IC 0 0 0 0 0
PS1 0.05 0.14 20.1 0.10 21.0
PS2 0.27 0.88 126.0 0.44 92.2
PS3 0.67 2.16 309.3 1.12 234.6
PS4 1.21 3.84 549.8 2.05 429.5

TABLE 1. Summary of experimental image times and locations.

to in this paper as a late time behaviour (PS4) may still be considered early by other
investigators and therefore the times given in table 1 should be used for objective
comparison.

3. Data processing
3.1. Concentration from PLIF

Prior to processing the PLIF images to reveal mole fraction, the background signal
is subtracted from each raw image. The background signal is an ensemble average of
10 images with the same optical setup, including laser pulses, but with no acetone in
the field of view. This background image contains both the camera noise and light
scattered off the walls of the shock tube. A second background subtraction step is
then applied, subtracting the average intensity in the unseeded portion of the flow (i.e.
the lower portion of the image). This ensures that the unseeded portion of the flow
has an average intensity of zero. Analytically, this procedure is

Sf ,temp
i,j = Iraw

i,j − 〈I
bg
i,j,k〉k, (3.1)

Sf
i,j = Sf ,temp

i,j − 〈Sf ,temp
i,j 〉i,j∈{unseeded}, (3.2)

where angle brackets denote averaging over the subscript, k is the background image
number, unseeded is the rows and columns of the unseeded region of the image and
S f is the final fluorescence signal. Equation (3.1) is an element-wise subtraction of a
matrix and (3.2) is a subtraction of a constant value.

Next, the background-subtracted PLIF images are processed to extract the
light-gas mole fraction, ξ , by correcting for non-uniform laser profile, laser sheet
divergence and Beer’s law attenuation. First, the background-subtracted PLIF image
is transformed to an r–θ coordinate system aligned with the laser beam and is
corrected for the signal decrease from laser sheet divergence. Then a region in the
top portion of the image is selected where a uniform concentration of pure seeded
(light, ξ = 1) gas exists. The Beer’s law attenuation coefficient is determined from
this region, corresponding to the acetone absorption cross-section. The normalized
acetone concentration can then be computed (Collins & Jacobs 2002) by integrating
downward while accounting for the divergence of the laser sheet, such that deviations
from Beer’s law attenuation are attributed to mixing of unseeded (heavy) gas or
changes in temperature. The equation for this is

ξ =

T
T1

S f

S f ,R
− n1σφ

∫ R

r

S f

φ
dr
, (3.3)
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548 D. T. Reese and others

Mi 1.6 2.2
Mt 1.9 2.9
Wi (m s−1) 1150 1576
Wt (m s−1) 592 919
V0 (m s−1) 315 606
Acetone (% Vol.) 7 7
ρ1 (kg m−3) 0.3 0.3
ρ2 (kg m−3) 1.6 1.6
ρ

‡
1 (kg m−3) 0.7 1.2
ρ

†
2 (kg m−3) 3.5 4.8

T‡
1 (K) 497 761

T†
2 (K) 557 1011

p‡
1 = p†

2 (MPa) 0.4 1.0
A 0.7 0.7
A† 0.7 0.6
(1− V0/Wi) 0.7 0.6(
ρ1/ρ

‡
1 + ρ2/ρ

†
2

)
/2 0.4 0.3

TABLE 2. Gas properties for the two Mach number cases, where daggers denote post-
shock quantities. Gas 1 is the light gas (helium seeded with acetone) and gas 2 is the
heavy gas (argon).

where S f is the local fluorescence signal, S f ,R is the fluorescence signal at the top of
the image where it is assumed ξ = 1, T/T1 is the temperature ratio in relation to the
pure seeded region, n1σ is the product of number density and absorption cross-section
in the pure seeded gas (this product is measured by the exponential signal variation in
the top of the image) and φ is the fluorescence quantum yield. The integral is carried
out from the location r to the top of the image at location R. This process is similar to
that used by Weber et al. (2014). It should be noted that temperature is approximated
as

T = T†
2 + (T

‡
1 − T†

2 )ξ , (3.4)

where daggers (†) indicate that a region of gas has been shocked, while double
daggers (‡) represent twice-shocked gas (by shock and reshock), such that T‡

1 and
T†

2 are the post-shock temperatures in the pure light and heavy gases, respectively,
calculated from one-dimensional (1-D) gas dynamics. A summary of the properties of
the gases used for each Mach number case in the present work is given in table 2.

Once concentration has been determined from fluorescence signal as described in
(3.3), the concentration field is then mapped back into the x–z coordinate system.
Finally, the 2-D Fourier transform of the corrected image is computed and the
spectrum is notch filtered to remove index of refraction artefacts that appear during
the image processing procedure (Weber 2012). Following the notch filtering, the
inverse transform of the corrected spectrum is computed and a final concentration
field is obtained for each experiment. A representative raw PLIF image is shown in
figure 3(a), and the corresponding processed image showing concentration is shown
in figure 3(b). In the corrected PLIF image, white indicates pure light gas, black
corresponds to pure heavy fluid and grey regions represent mixed gas of various
species concentration.
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x

z

(a) (b) (c)

(d ) (e) ( f )

FIGURE 3. (Colour online) Representative data processing results and field matching
for PLIF and PIV. (a) Raw fluorescence signal, (b) corrected PLIF image showing
concentration with white indicating pure light gas and black corresponding to pure heavy
fluid, (c) out-of-plane vorticity, ωy, overlaid on ξ field to show field matching, (d) raw PIV
particle image, (e) output streamwise velocity with red indicating downward-moving gas
and blue corresponding to upward-travelling fluid and ( f ) output transverse velocity with
red indicating rightward-moving gas and blue corresponding to leftward-travelling fluid.

3.2. Velocity from PIV
The concept behind obtaining velocity from PIV particle image pairs is simple: with
a known time between images 1t, if a group of particles from image 1 is advected
to a different location in image 2 and the spatial displacement of that group of
particles 1x(x, t) can be determined, the velocity u(x, t) for that small search region
is estimated using

u(x, t)=
1x(x, t)
1t

. (3.5)

In the present experiments, the most-likely displacement vector of particle groups is
determined through spatial correlation analysis of the experimental particle image pairs
using the Insight 4G PIV software package from TSI Inc.

For each of the 20 concentration images obtained at every post-shock time, a
corresponding particle image pair is captured by the PIV camera such that each
pixel is ∼50 µm in the focal plane. A single raw particle image is shown in
figure 3(d). Similarly to processing PLIF images, the first step in obtaining velocity
from PIV image pairs is subtracting the background signal from each raw image.
Here the background signal for the first particle image is an ensemble average of
10 first-frame images, while the background signal for the second particle image
of the pair is an ensemble average of 10 second-frame images. As with PLIF, all
background images use the same optical set-up, including laser pulses, and contain
both the camera noise and light scattered off the walls of the shock tube; however, no
TiO2 particles are present in the field of view for PIV background images. It is this
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background-subtracted particle image pair that is used as input to the Insight 4G PIV
algorithm.

Before conducting cross-correlation, a 5× 5 Gaussian filter with σ = 0.5 is applied
to background-subtracted image pairs. Following this pre-processing step, a recursive
Nyquist grid is used to break the input images into smaller spots for processing, and
the first processing pass computes the vector field at a starting spot size of 128× 128
pixels with 50 % overlap grid spacing. The results of this first processing pass are then
used to optimize the spot offsets for the second pass, where the spot size is reduced
by a factor of two. This optimization and spot-size reduction occur once more so that
a final spot size of 32 × 32 pixels is achieved. At each pass, a zero pad mask is
applied to compute the average pixel intensity of each spot and subtract it from each
pixel prior to passing the spots to the correlation engine. This zero pad mask is chosen
to increase the signal-to-noise ratio of correlations.

A direct correlator is used to compute the correlation function of the masked
spots and return the result as a correlation map. The correlation is computed by first
determining the mean intensity in the sample box of image 1,

Īa =
1

BxBy

Bx∑
k=1

By∑
l=1

Ia(k, l), (3.6)

and the mean intensity of the current test box in image 2,

Īb =
1

BxBy

Bx∑
k=1

By∑
l=1

Ib(k+ i, l+ j), (3.7)

where Ia(1, 1) and Ib(1, 1) represent the pixel intensities at the corner of a pattern box
of size Bx by By, centred at image coordinates (x, y), in images 1 and 2, respectively.
This spot mean intensity is then subtracted from each pixel, and the product of
intensities at each pixel offset is summed to give the correlation map. This correlation
map is adjusted by an autocorrelation factor to increase the displacement measurement
accuracy, giving the variance normalized correlation, or covariance. The highest peak
in this correlation map is used to locate the particle image displacement, and is
determined using a Gaussian peak engine. The Gaussian peak engine locates the
correlation peak with sub-pixel accuracy by fitting a Gaussian curve to the highest
pixel and its four nearest neighbours. Two 3-point fits are done: one in the x direction
with the peak pixel and the pixels to the left and right of the peak, and one in the z
direction with the peak pixel and the pixels above and below the peak. The Gaussian
peak equation is given by

dx= x+
log(l)− log(r)

2[log(l)+ log(r)− 2log(c)]
− x0, (3.8)

where l, r, and c are the intensity value for the left, right, and peak pixels in the
correlation map, x is the integer shift, and x0 is the zero shift location. The uncertainty
of the PIV measurement was quantified using the correlation statistics method
(Sciacchitano et al. 2015) and the 32 × 32 box uncertainties in the mixing layer
fit a log-normal distribution. Corresponding uncertainties from the lognormal peaks,
for the low and high Mach numbers, respectively, are 0.62 m s−1 and 0.73 m s−1.

With the x and z displacements determined by Insight, full-field transverse and
streamwise velocity can be easily determined using (3.5) with the known inter-frame
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time between particle images. Velocity results are then post-processed to remove
outliers using a global validation and a 5 × 5 pixel local test to replace velocity
values outside 3σ with the local median. Typical velocity results for the streamwise
and transverse directions are shown in figure 3(e, f ), respectively. Figure 3(e) shows
streamwise velocity, with downward-travelling regions in red and upward-moving
fluid in blue. Comparison with figure 3(b) shows that regions of upward-going gas
correspond to spikes and downward-moving regions correspond to bubbles in the
interface structure. Figure 3( f ) shows transverse velocity, with rightward-travelling
gas in red and leftward-moving fluid in blue.

3.3. Field matching
With concentration and velocity fields determined from the raw PLIF and PIV images
as described in the previous two sections, the velocity results determined by Insight
4G must now be matched to the corrected ξ field coordinate system, so as not to
sacrifice the spatial resolution of the PLIF data. This is accomplished using images
of a test target taken prior to each experiment by both the PLIF and PIV cameras to
determine the transformation matrix T that will map the PIV target coordinates (x, z)
to the PLIF target (and ξ field) coordinates (x, z) as

[x z 1] = [x z 1]T . (3.9)

Because the lines of sight of both cameras are perpendicular to the imaging plane
with an overlapping region of interest, the transformation to map the PIV target image
to the concentration field need only include rotation, scaling, and a two-dimensional
translation, such that

T =

s cos(Θ) −s sin(Θ) 0
s sin(Θ) s cos(Θ) 0

Tx Tz 1

 , (3.10)

where s is the scale factor, Θ is the rotation angle, Tx is the x-direction translation and
Tz is the z-direction translation. Target images are used to determine the four unknown
parameters in (3.10) by selecting control points in the PLIF target image, and then
selecting the corresponding points in the PIV target image to determine the geometric
transformation T .

Before applying the determined transformation to velocity fields, velocity output
from Insight 4G must first be resized to match the PIV target image. Since the
final search box used to determine velocity from the PIV particle image pair was
32 × 32 pixels with 50 % overlap, this means that for each 16 × 16 pixel region in
the PIV target image, there will only be a single data point in the corresponding
velocity field. Hence, prior to applying T , velocity fields are first up-sampled using
a bi-cubic interpolation where the output pixel value is a weighted average of pixels
in the nearest 4 × 4 neighbourhood. Finally, because the two cameras’ sensors had
different aspect ratios, the transformed velocity field must also be cropped to the
same 1024 × 1024 size as the ξ field. By cropping the transformed velocity results,
each pixel in the u(x, z) and w(x, z) fields will match directly to a corresponding
pixel in the ξ(x, z) field.

The effectiveness of this matching technique can be seen by overlaying the
transformed velocity results on the concentration field. This is demonstrated by
first computing the out-of-plane vorticity (ωy, henceforth referred to simply as ω)
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FIGURE 4. (Colour online) Field decomposition showing the (a) global mean-subtracted
field ŵ, (b) mean field w, (c) fluctuation field w′, and (d) line plots showing the breakdown
into mean and fluctuations through the mixing layer.

using the two known components of the velocity, ω≡∇× u, and overlaying vorticity
above a certain threshold on the corresponding ξ field, as shown in figure 3(c). Here
we see that, as expected, the regions of strongest vorticity correspond directly to those
locations of concentration that have the strongest gradients. Moreover, by visualizing
the vorticity of the gas within the mixing zone, further insight into the effect of
velocity on interface structure can be easily obtained.

3.4. Decomposition of fields
The first step in determining velocity fluctuations in the flow is to subtract the
field average velocity from each pixel. For the streamwise direction, this subtraction
accounts for the post-shock interface velocity, and is near the 1-D gas dynamics value
of the flow (∼315 m s−1 for M = 1.6, and ∼605 m s−1 for M = 2.2), such that

ŵ=w−wavg, (3.11)

where w is the measured velocity field, wavg is a single value representing a global
field average velocity and ŵ is the mean-subtracted velocity field which will be
referred to as the global fluctuations. This ŵ field has a velocity distribution centred
about 0 m s−1, and shows the large-scale structure of the streamwise velocity. An
example of a mean-subtracted velocity field is shown in figure 4(a). The same process
is also carried out for the transverse velocity field, though it should be noted that,
unlike wavg, the value of uavg remains near zero for all experiments.

With the global fluctuation fields determined from (3.11), the flow can now be
further decomposed into a mean field and a local-fluctuation field. Two different
methods were applied to achieve this decomposition, and each was applied to both
the concentration and velocity fields so that

û= u+ u′ and ξ = ξ + ξ ′, (3.12a,b)

where an overbar indicates the mean field and a prime denotes the fluctuating field
which will be referred to as the local fluctuations. Ideally, one would ensemble average
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results over several experiments to obtain a mean flow field; however, the run-to-run
variation of the fields proved too great to give meaningful results using this method.
Instead, the first technique we will explore to determine this decomposition involves
using a two-dimensional moving boxcar average to calculate a mean component of
concentration and velocity for each experiment, while the second method utilizes
spectral filtering to remove small-wavenumber features from the fields.

The mean flow field was first obtained for each experiment by filtering the
concentration and velocity global-fluctuation fields with a 2-D moving boxcar
average. Of course, since this method of filtering utilizes a set window size over
which averaging occurs, the size of the filtering window should be based on some
macroscopic feature of the flow to account for the growth of the mixing layer
thickness over time. Here, the filter window size was chosen to be 1/20 of the average
height of the 0.05< 〈ξ〉< 0.95 region of the mixing layer for each post-shock time
and Mach number case. In this way, as the number of pixels over which the average
is being calculated increases, the boxcar average window grows proportionally. After
applying this filter to the concentration and global-fluctuation velocity fields to obtain
the mean component of the flow, results were subtracted from the ξ and û fields to
yield the local-fluctuation fields.

A spectral method was also used to determine the decomposition of concentration
and velocity fields. For this method, a two-dimensional fast Fourier transform (FFT)
is performed on the field before applying a Fermi–Dirac soft cutoff filter (Heim, Jesch
& Ghandhi 2014). The kernel of the soft cutoff filter is calculated as

1

1+ exp
(

kxz − kc

0.1kc

) , (3.13)

where kxz =
√

k2
x + k2

z is the two-dimensional wavenumber, and kc = (2π)/Lc is the
cutoff wavenumber with Lc being the cutoff length scale. The filter gradually sets
the Fourier coefficients above kc to zero. The Liepmann–Taylor scale, λL, defined
by Grinstein (2016) as λL = 2.17λT (where λT is the Taylor microscale), makes a
natural cutoff length scale as λL represents the smallest scale generated by the largest
eddies. In other words, the Liepmann–Taylor scale bounds the isotropic region from
the energy containing range (i.e. is an upper limit of the inertial range). Finally, the
two-dimensional inverse fast Fourier transform (IFFT) is applied to obtain a low-pass
(or spatially averaged) field. As with the moving boxcar method, this average field is
subtracted from the ξ or û field to obtain the local-fluctuation field. Results using this
spectral method showed good agreement with results using the boxcar method.

Field decomposition results are shown in figure 4 for the streamwise component
of velocity using the spectral method of filtering. Figure 4(a) shows the ŵ
global-fluctuation field, and figures 4(b) and 4(c) show the corresponding mean
w and local-fluctuation field w′, respectively. We note that figure 4(c) shows large
fluctuations embedded in underlying smaller random fluctuations, and that the regions
of strongest fluctuations correspond with the regions of highest vorticity, as shown in
figure 3(c). A line plot from the centre row is shown in figure 4(d), where the black
line shows the global fluctuation, the blue line shows the mean component of velocity,
and the red line shows the local fluctuating component of the flow. We note that
this methodology for obtaining local fluctuations is an advancement over techniques
used in previous work where the field to be analysed is obtained by performing a
columnwise subtraction of the spanwise-averaged field profile (Balakumar et al. 2012;
Weber et al. 2014; Gerashchenko & Prestridge 2015).
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FIGURE 5. (Colour online) Representative field evolution results for the M = 1.6 case.
From top to bottom: IC, PS1, PS2, PS3, PS4. From left to right: concentration ξ , global-
fluctuation transverse velocity û, global-fluctuation streamwise velocity ŵ and vorticity ω.

4. Results and discussion
4.1. Field structure and distribution

The experimental campaign discussed in this paper yielded planar concentration and
two-dimensional, two-component velocity results for nearly 200 shocked interfaces;
a representative subset of these fields is shown in figure 5. Figure 5(a) shows
concentration results, where white corresponds to pure light gas, black corresponds
to areas containing only argon and grey indicates regions of mixed fluid. Figure 5(b)
shows the global-fluctuation transverse velocity field, where blue corresponds to
leftward-moving gas and red indicates rightward-going fluid. Figure 5(c) shows the
global fluctuation streamwise velocity field, with blue indicating upward-moving fluid
and downward-travelling gas shown in red. Finally, figure 5(d) shows the vorticity
field ω calculated from the curl of the velocity. The broadband, shear-layer initial
condition is shown in the top row, and post-shock results (PS1–PS4) are shown
in the following four rows. Note the difference in colour bar scaling for velocity
and vorticity fields between the initial condition and post-shocked results due to the
vastly different velocities within the mixing layer before and after acceleration by the
shock wave.

The shear-layer initial condition ξ -field is shown in the top row of figure 5(a),
while the û field shows a rightward-moving jet corresponding to the injected gas
from the left side of the tube, with recirculation zones developing above and
below the injection site on the left side of the velocity field. The ŵ field shows
alternating upward and downward traveling gas typical of the Kelvin–Helmholtz and
Rayleigh–Taylor instabilities. Due to the horizontal injection of gas used to create
the shear layer, vorticity fields for the initial condition show a generally horizontal
banding of vorticity across the interface. In the next row down, the PS1 ξ -field shows
compression of the interface following passage of shock wave, while û shows the
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beginning of a breakup of the coherent jet seen in the initial condition and ŵ shows
an intensifying of the alternating upward and downward velocity. There is a continual
breakup of the jet and a development of large-scale spike and bubble structures seen
at each successive post-shock time, until coherent spike and bubble structures appear
by the latest post-shock time. In the last row of figure 5, the effect of velocity on
interface structure is evident as regions of strong upward motion correspond with
spike features, and downward-moving gas aligns perfectly with bubbles in the ξ -field.
Vorticity is shown to be strongest along the regions of largest gradients in the ξ -field,
and the horizontal banding of ω seen at the initial condition has given way to
alternating vertical bands of vorticity aligned with the spike and bubble structures
seen at the PS4 time. While fields shown here are for M = 1.6, results are similar
for the higher Mach number case, although there is more turbulent mixing occurring
by late times for the M = 2.2 case, as evident by the break down to smaller-scale
features and more ‘grey’ mixed gas regions in the ξ -fields. This increased mixing at
higher Mach number is explored further through probability density functions (PDFs)
of concentration, as well as the density self-correlation across the mixing layer as
discussed in § 4.4.

The overall composition of the mixing layer (within 0.05< 〈ξ〉< 0.95) is obtained
from two-dimensional PDFs of concentration by

PDF (ξ)=
∫ 0.5

−0.5
PDF (ξ , z̃) dz̃, (4.1)

where z̃ is the vertical direction scaled by the height of the 0.05< 〈ξ〉< 0.95 region
of the interface. These PDFs are shown in figure 6 for the (a) M = 1.6 data and (b)
M= 2.2 data. Had a region containing the entire interface been considered in the PDF
calculation, one would expect to see an initially bimodal distribution (with the modes
at ξ = 0,1) that would grow monotonically at intermediate values as the amount of
mixed fluid increases at later times. However, by only considering fluid within the
0.05< 〈ξ〉< 0.95 region, the PDFs instead show that a local peak near ξ ∼ 0.5 reduces
over time and appears to mix with the lighter (ξ = 1) fluid. This process occurs more
rapidly in the M = 2.2 case and results in an increase in the fluid for ξ > 0.5. This
bias for mixing of the lighter fluids has been noticed elsewhere and is attributed to
the greater inertia of the heavy fluid (Livescu & Ristorcelli 2008; Weber et al. 2014).
Figures 6(a) and 6(b) also show a nearly monotonic increase of PDF(ξ ) in time for
ξ = 0 and ξ = 1 due to the development of spikes and bubbles in the mixing zone
that cause more unmixed fluid to be brought into the 0.05 < 〈ξ〉 < 0.95 region as
the interface becomes more distorted at late times. A rapid increase in PDF(ξ ) near
ξ = 1 for the M= 1.6 case indicates that light gas is penetrating into the mixing layer
without mixing, while the more gradual increase in PDF(ξ ) near ξ = 1 for the M= 2.2
case shows that, while there is a larger fraction of light fluid in the mixing layer due
to bubble development, this fluid is mixing with the surrounding gas as it penetrates
the interface.

This same method of determining PDFs within the 5 %–95 % mixing region is
applied to the corresponding transverse and streamwise global velocity fluctuations
as well. Global velocity fluctuations in the transverse direction (shown in figures 6(c)
and 6(d) for the M= 1.6 and M= 2.2 cases, respectively) show a dual-peaked PDF(û)
for the initial condition. The right peak seen in the initial condition PDFs is due
to the positive velocity associated with the rightward-moving injected gas jet used
to set-up the shear layer, while the left peak corresponds to the distribution about
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FIGURE 6. (Colour online) Probability density functions of (a) ξ for the M = 1.6 case,
(b) ξ for the M= 2.2 case, (c) û for the M= 1.6 case, (d) û for the M= 2.2 case, (e) ŵ
for the M = 1.6 case and ( f ) ŵ for the M = 2.2 case. Units for û and ŵ are m s−1.

the stationary u = 0 gas, but has been shifted off zero by the subtraction of uavg
to obtain the û field. Following passage of the shock wave, the velocity increases
by approximately two orders of magnitude and the two peaks begin moving closer
together. This convergence of peaks continues through PS2, until they have combined
into a single peak by PS3 for each case. By PS4, transverse velocity again begins
to develop a dual-peaked structure, likely due to the outward growth associated with
expanding spikes and bubbles that have developed by this latest time.

In the streamwise direction, PDFs show (in figures 6(e) and 6( f ) for the low and
high Mach number cases, respectively) a nearly Gaussian distribution of velocity at the
initial condition that increases by approximately three orders of magnitude following
shock acceleration. The PDF distribution peaks at PS3 for the M = 1.6 case and at
PS2 for the M = 2.2 case, and this difference could be associated with an earlier
transition to turbulence for the higher Mach number case. Further evidence of this
transition occurring near PS3 for the M= 1.6 case and near PS2 for the M= 2.2 case
is presented through measurements of density self-correlation and Reynolds number
in §§ 4.4 and 4.7, respectively. After reaching the peak value near ŵ= 0, the PDF(ŵ)
distribution takes on a dual-peaked structure due to the development of large-scale
spikes and bubbles. This two-peaked structure of the PDFs for streamwise velocity
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begins sooner and shows greater spread in velocity by the latest time for the high
Mach number case, though both cases show a larger peak associated with the upward-
moving (ŵ< 0) spikes than for the downward-going (ŵ> 0) bubbles.

4.2. Spanwise-averaged profiles
Velocity and concentration profiles are investigated here, where the spanwise-averaged
mole-fraction field is defined by

〈ξ〉 =
1

x2 − x1

∫ x2

x1

ξ dx, (4.2)

where x1 and x2 are the first and last spanwise position for which ξ measurements
were obtained, respectively, such that the integral is performed across the entire width
of the field for each experiment to yield a single profile. A similar approach was used
for the transverse and streamwise global velocity fluctuations. The vertical coordinate
of the profiles from individual experiments are each scaled by the height of the 0.05<
〈ξ〉< 0.95 region of the turbulent mixing zone (h5–95), where the most extreme values
of 〈ξ〉 = 0.05 and 〈ξ〉 = 0.95 were chosen to yield the largest h5–95. Scaled profiles
are then ensemble averaged to create a single profile at each time. Ensemble spanwise-
averaged profiles for each post-shock time are shown in figure 7, with results for M=
1.6 experiments on the left, and profiles from the M = 2.2 case on the right.

Figure 7(a,b) shows the spanwise-averaged concentration results. These profiles
look very different from previously reported profiles (Weber et al. 2014) despite the
similarities with these earlier studies. The difference comes from the chosen match
point for interface height scaling and ensemble averaging. Because each experiment
produces an interface of differing thickness, when scaling by the h5–95 and averaging
results from individual runs, experiments must be matched at a chosen point. This
match point will be the common location where profiles from each time will overlap,
by definition. In previous experiments, the ξ = 0.05 (or ξ = 0.95) locations were
used as match points, and profiles showed rough, irregular slopes matched at the
corresponding z/h5–95 = −0.5 (or 0.5) locations. In the present work however, a
central value of ξ = 0.5 was chosen as the match point. As a result, concentration
results in figure 7 show more symmetric, ‘S’-shaped spanwise-averaged profiles which
are centred on z/h5–95 = 0.

The initial condition concentration profile shows a gradual slope with a kink in
the profile just below the z/h5–95 = −1 location. This kink should be attributed to
variability in the exact location of the shear jet used in creating the initial condition
interface, which is shown to be located at a similar z/h5–95 height in the transverse
velocity profiles in figure 7(c,d). After shock, this gradual slope is shown to steepen
in time, with a more rapid increase occurring for the higher Mach number case. This
steepening in time is a result of pure (ξ = 0 or ξ = 1) gas being pushed into the
mixing zone with the development of spikes and bubbles at late times. Consequently,
bubbles will cause the 〈ξ〉 value to increase ever closer to the interface midpoint above
the z/h5–95= 0 location, while spikes will drive the 〈ξ〉 value towards zero below the
interface.

In figure 7(c,d), spanwise-averaged profiles are shown for the global transverse
velocity fluctuations, û. These profiles show the rightward-moving jet used to establish
the shear-layer initial condition occurring near z/h5–95=−0.7, along with recirculation
zones directly above and below the jet region. These features are also clear in the
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FIGURE 7. (Colour online) Spanwise-averaged profiles of concentration and velocity for
M= 1.6 (a,c,e) and M= 2.2 (b,d, f ). From top to bottom: Concentration, global transverse
velocity fluctuations and global streamwise velocity fluctuations.

initial condition transverse velocity fields shown in figure 5. Following passage of the
shock wave, global transverse velocity profiles for PS1 show compression and a nearly
10× increase in spanwise velocity. What was the central jet region is also shown to
push downwards from the top of the mixing layer towards the centre of the mixing
layer near z/h5–95 = 0. At higher M acceleration there is greater compression of what
was the jet region, which is also pushed deeper into the centre of the mixing layer
when compared with the low M case. The velocity in the recirculation zone above the
jet remnant is accentuated as time progresses such that the entire region above the jet
remnant pushes leftward at late time. Alternatively, a monotonic increase in spanwise
velocity with time is observed to occur below the interface, corresponding to bulk
rightward motion below the interface midpoint. This increase in spanwise-averaged
global transverse velocity above and below the interface is roughly 3× greater for
the higher Mach number case than in the low Mach number experiments.

Finally, spanwise-averaged profiles of the global streamwise velocity fluctuations are
shown in figure 7(e, f ). While not easily seen in figure 7, the streamwise velocity in
the initial condition is found to be positive above the interface and negative below it.
This is due to the fact that the light gas is filled from the top of the tube and flows
downward (with positive streamwise velocity), while the heavy gas is filled from the
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FIGURE 8. (Colour online) Mixing-layer thickness measurements. (a) Adjusted interface
(bottom) eliminates additional height added by large-scale features present in the
uncorrected mixing layer (top), and results in better collapse of thickness measurements.
(b) Symbols show the average non-dimensional threshold measurements of the 0.05 <
〈ξ〉< 0.95 region in time, error bars show the standard deviation from the 20 experiments
and dotted line shows a power-law fit to data.

bottom of the tube and pushes upwards (with negative streamwise velocity) towards
the interface. From the initial condition to PS1, velocities in the streamwise direction
are shown to increase by more than two orders of magnitude. Each successive profile
shows a general steepening in time, corresponding to an increase in velocity, with
regions above the interface moving downwards with ever-increasing speed, and regions
below the interface moving upwards increasingly rapidly. This trend is likely due to
the development of the large-scale spikes and bubbles in the flow, where the light gas
continues to push downwards through the interface, and the heavy gas approaches the
mixing zone more readily with the development of penetrating spikes. Similar trends
are observed for both the low and high Mach number cases, with slightly higher
velocities by the latest time for the M = 2.2 case.

4.3. Mixing-layer thickness
Threshold measurements of the 0.05 < 〈ξ〉 < 0.95 mixing-layer thickness, h5–95, are
made using a spanwise-averaged mole-fraction field similar to results discussed in
the previous section, but with an important adjustment made to the interface. Since
better collapse of the thickness measurements was obtained by removing large-scale
structures from the mixing layer, this interface adjustment is made prior to spanwise
averaging the field. This is done by first finding the midpoint location between the
〈ξ〉= 0.05 and 〈ξ〉= 0.95 rows for each spanwise position, defined as z0 and shown in
figure 8(a) (top) as a red line across the mixing layer. Each spanwise position is then
vertically shifted to bring all z0 to the same height, as shown in figure 8(a) (bottom).
If the spanwise position was shifted upwards, the bottom of that location was padded
with zeros, while if the spanwise position was moved downwards, the top was filled
with ones.

From the adjusted interface, threshold measurements of h5–95 were obtained for each
experiment and averaged to give a single thickness measurement at every post-shock
time. Results were non-dimensionalized using h∗0 – the pre-shock interface thickness
scaled by the compression factor (1− V0/Wi) – and the dominant wavenumber,

h̄= (h5–95 − h∗0)k0, (4.3)

and time was non-dimensionalized as,

τ = tV0A+h∗0k2
0, (4.4)
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FIGURE 9. Comparison of mixing-layer thickness definitions showing that integral
measurements are proportional to threshold measurements of thickness.

where t is the time, V0 is the post-shock interface velocity, Wi is the incident shock-
wave speed, A+ is the post-shock Atwood number and k0 is the dominant wavenumber.
The value for k0 is determined from the initial conditions as k0 = 2π/λ0, where λ0
is the dominant wavelength, similarly to the method used by Weber (2012). These
non-dimensional thickness measurements are shown in figure 8(b), where error bars
show the standard deviation from the 20 experiments at each time, and the dotted
line shows a power-law fit to data such that

(h5–95 − h∗0)k0 = a(tV0A+h∗0k2
0)
θ , (4.5)

where a is unity and the power-law fits θ = 0.34 ± 0.01. This value of θ is similar
to previously reported values (0.25 6 θ 6 0.5) in the work of Dimonte & Schneider
(1997, 2000), Prasad et al. (2000), Jacobs et al. (2013) and Weber et al. (2014).

A similar measure of the mixing-layer thickness, called the mixing product
thickness, hp, can be obtained from the adjusted spanwise-averaged profiles. This
has been used previously by Cook & Dimotakis (2001) and Weber et al. (2014), and
is defined as

hp =

∫
∞

−∞

ξp (〈ξ〉) dz, (4.6)

where

ξp(ξ)=

{
2ξ for ξ 6 0.5
2(1− ξ) for ξ > 0.5,

(4.7)

is the mixture composition, and an equimolar mixture has ξp = 1. This quantity
is shown in figure 9 and these integral measurements of thickness are found
to be proportional to the threshold measurement h5–95 value (hp = 0.57h5–95).
This proportionality is identical to measurements made by Weber et al. (2014),
despite the different growth exponent θ due to the adjustment used to remove
large-scale features from the interface.
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The threshold and integral measurements of the mixing-layer thickness explored
above do not differentiate between mixed gas and gas that is penetrating the interface
but remains unmixed. For this, a definition of ‘mixedness’ will need to be introduced.
The relative amount of molecular mixing occurring within the interface can be
characterized as a ratio of a mixing length to an entrainment length. Multiple
definitions have been proposed, but perhaps the two most commonly referenced
global mixing parameters are those by Youngs (1994):

Θ =

∫
∞

−∞

〈ξ(1− ξ)〉 dz∫
∞

−∞

〈ξ〉〈1− ξ〉 dz
, (4.8)

and a similar definition by Cook & Dimotakis (2001):

Ξ =

∫
∞

−∞

〈ξp〉 dz

hp
. (4.9)

For both cases, a ratio with a value of 1 corresponds to a fully homogenized fluid
without interpenetrating perturbations, while a value of 0 indicates no molecular
mixing of the fluids. It should be noted that the terms ξp (in Ξ ) and ξ(1 − ξ) (in
Θ) both have the property of being maximal for ξ = 0.5 and decrease monotonically
toward ξ = 0, 1. The two definitions of mixedness were compared in Cook, Cabot
& Miller (2004) and Mellado, Sarkar & Zhou (2005) and were shown to give very
similar results. This similarity between the two definitions of global mixing is also
seen in the current studies. The latter definition was used by Weber et al. (2014),
and produced results comparable to those found for Ξ in the present work.

As shown in figure 10, the value of both Θ and Ξ is found to strictly decrease in
time for the low M case, and decrease before increasing again for the high M case.
Youngs’ definition of mixedness is larger than Cook’s definition during compression,
while the opposite is true at late times. This is a similar trend to what has been
previously reported, where Θ underpredicts the initial homogenization of fluid and
then also underpredicts the ensuing fluid mixing at later times when compared to
Ξ values of mixedness. Measurements of Ξ show that for both values of M, it
reaches a final value near 0.8, which is the asymptotic value reported after the onset
of turbulent mixing in Rayleigh–Taylor simulations (Cook et al. 2004), while Θ
approaches a value slightly below 0.8. Simulations have also shown that the cross
from Θ over-predicting to under-predicting the mixed fluid measurement (when
compared with Ξ values of mixedness) occurs following the rapid growth of Θ
and Ξ that occurs after reaching the minimum value. This could be used to argue
that, like the M = 2.2 case, the M = 1.6 value for Θ and Ξ could also decrease
between PS1 and PS2 before increasing again at later times; however, this effect is
not captured at the times the interface was studied in this work.

4.4. Density self-correlation
The density self-correlation (DSC) is another measure of fluid mixing, where a
value of zero indicates perfectly mixed fluid. Density self-correlation is an important
quantity for turbulence modelling and appears in the production term of the mass-flux
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FIGURE 10. Comparison of mixing definitions Ξ and Θ for the low and high Mach
number experiments.

equation. Previous experiments have measured DSC to provide validation for
initializing the BHR (Besnard–Harlow–Rauenzahn) RANS (Reynolds-averaged Navier
Stokes) model (Orlicz et al. 2015) for variable density flows. DSC is involved in the
conversion of potential energy into kinetic energy, and is defined by

b=−
〈
ρ ′
(

1
ρ

)′〉
, (4.10)

where brackets denote spanwise averaging and primes indicate fluctuations. The DSC
is determined by first calculating density from the measured concentration field using

ρ = ρ
†
2 + (ρ

‡
1 − ρ

†
2)ξ , (4.11)

where a single dagger indicates once-shocked gas, a double dagger represents twice-
shocked gas (by the incident and reflected shock wave) and ρ1 and ρ2 are the density
of the light and heavy gases, respectively. The fluctuating component of the density
field and 1/ρ is then determined using the spectral filtering method described in § 3.4.
While the correlation is between the density field and its reciprocal, the means and
other moments of ρ and 1/ρ will generally not be related by reciprocals.

The mean value of DSC as a function of height through the mixing layer is shown
in figure 11(a) for the M= 1.6 case and in figure 11(b) for the M= 2.2 case. Results
were obtained by ensemble averaging the 20 DSC measurements from individual
experiments to obtain a mean value for every post-shock time at each Mach number.
This averaging technique is shown in figure 11(c), where the coloured lines show
density self-correlation measurements for individual experiments, while the thick
black line shows the average DSC profile for that post-shock time.

Measurements of the DSC through the mixing layer for the low Mach number case
show general growth in time, indicating that the fluid is less mixed at later times. This
is likely the result of large spikes and bubbles carrying unmixed fluid into the mixing
layer. However, for the high Mach number case, DSC measurements show growth
through PS2, before decaying at PS3 and PS4. The turnaround in the DSC trend
for the M = 2.2 case is caused by the increased mixing and breakdown to smaller
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FIGURE 11. (Colour online) Average density self-correlation measurements for the (a)
M=1.6 case and (b) M=2.2 case. Example of ensemble averaging over 20 experiments to
obtain mean b measurements shown in (c), where coloured lines show data from individual
experiments and the black line shows the campaign average. Details of the ξ field showing
evidence of mixing differences at the latest post-shock time for the (d) low Mach number,
and (e) high Mach number cases.

scales associated with a transition to turbulence. This difference in the behaviour of
the DSC between the low and high Mach number cases can be better understood
by a comparison of the ξ (and ultimately ρ) fields at the latest post-shock time.
Figure 11(d) shows a bubble and spike that have developed at PS4 for the M = 1.6
case, showing the largely unmixed fluid penetrating the mixing layer leading to an
increase in DSC. Conversely, figure 11(e) shows a similar feature for the M = 2.2
case, where the spike and bubble have smaller-scale features and increased mixing
(more grey regions within the mixing layer) relative to the low Mach number case,
leading to a reduction of the DSC mixing measurement at late times. This evidence
of transition to turbulence occurring by PS2 for the M= 2.2 case is further supported
by Reynolds number measurements discussed in § 4.7.

4.5. Energy spectra
The scale dependence of concentration and velocity fluctuations is reported here
using one-dimensional energy spectra. This approach has been applied previously
for variable-density turbulence in the Rayleigh–Taylor instability (Dalziel, Linden &
Youngs 1999; Wilson & Andrews 2002; Ramaprabhu & Andrews 2004; Mueschke,
Andrews & Schilling 2006; Banerjee, Kraft & Andrews 2010), as well as shocked
gas-curtain experiments (Vorobieff, Rightley & Benjamin 1998; Vorobieff et al. 2003)
and shear-layer interface experiments (Weber et al. 2014), which have reported the
existence of a k−5/3 inertial range. These experiments showing a k−5/3 scaling in the
inertial range are corroborated by simulations (Miles et al. 2005; Hill et al. 2006;
Schilling & Latini 2010), while other simulations found k−3/2 to fit better at late
times (Thornber et al. 2010), and others still found turbulence spectra that did not
scale well with either k−5/3 or k−3/2 (Cohen et al. 2002; Grinstein et al. 2011). Zhou
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(2001) has suggested that the spectrum of RMI turbulence should scale as k−3/2 in
the inertial range before reducing to the classical Kolmogorov k−5/3 scaling at late
times.

One-dimensional scalar power spectra, Eξ (kx), are computed in the self-similar
(horizontal) direction within the region 0.05 < 〈ξ〉 < 0.95 and results are averaged
over rows from all 20 experiments at each post-shock time. To reduce the influence of
noise and extend the spectrum at the highest wavenumbers, an interlacing technique
is used (Kaiser & Frank 2007; Weber et al. 2014) where the Fourier coefficient,
F(ξ(x)), is multiplied by the complex conjugate of the Fourier coefficient of the
adjacent row,

Eξ (kx)≈ F(ξj(x))F∗(ξj+1(x)). (4.12)

This averaged, interlaced scalar power spectrum is shown in figures 12(a) and
12(b) for the low and high Mach number cases, respectively. All spectra have been
normalized by their peak value for a better comparison of relative energy distribution
in time. While spectra appear to tend towards a k−5/3 inertial range by the latest
time for both Mach numbers, this slope is only achieved at the lowest wavenumbers
near kx ' 100 m−1 before dropping off at higher wavenumbers. Comparison of
figures 12(a) and 12(b) show that, for the high Mach number case, spectra approach
their late time form slightly more quickly than for the low Mach number case. The
cutoff wavelength for PLIF is based on the laser sheet thickness and corresponds to
a cutoff wavenumber of 1.8× 104 m−1. For PIV, the overlap size of 16 pixels is used
as the cutoff wavelength and corresponds to a cutoff wavenumber of 1.08× 104 m−1.

A similar approach was taken to obtain the turbulent kinetic energy (TKE) spectra.
Since only two components of velocity were measured, we will refer to these spectra
as planar TKE. Because these flows are variable density, it is necessary to consider
both density and velocity when calculating TKE. As with the scalar power spectra,
the planar TKE spectrum is calculated using the interlacing method,

TKE(kx)≈ F(Kj(x))F∗(Kj+1(x)), (4.13)

where K is the density-weighted planar turbulent kinetic energy defined using the
global velocity fluctuations,

K=
ρ

2
[û2
+ ŵ2
]. (4.14)

These energy spectra have also been normalized by their peak value, and results
are shown in figures 12(c) and 12(d) for the low and high Mach number cases,
respectively. Planar TKE spectra show the clear development of a k−5/3 inertial range
which spans over roughly a decade of wavenumber space. We also note a monotonic
increase in energy at small scales in time, with a more rapid increase occurring for
the M = 2.2 experiments. Comparison of the spectra at the latest time is shown in
figure 12(e), where late time planar TKE spectra show slightly higher energy at larger
wavenumbers, whereas scalar power spectra show good agreement for both the low
and high Mach number cases.
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FIGURE 12. (Colour online) Comparison of normalized spectra showing evolution of
relative energy. (a) Scalar power spectra for M = 1.6 case, (b) Scalar power spectra for
M = 2.2 case, (c) TKE spectra for M = 1.6 case, (d) TKE spectra for M = 2.2 case and
(e) comparison of spectra at latest time.

4.6. Reynolds stresses
Turbulent mass-flux velocity (TMFV) is a primary turbulent source term for mixing,
and it appears as a prefactor in the production term for the turbulent kinetic energy
evolution equation. Here the density-weighted TMFV is studied, which is defined as

ai =
〈ρ ′u′i〉
〈ρ〉

, (4.15)

where the brackets denote spanwise averaging, primes indicate fluctuations determined
using the spectral method in § 3.4, the index i denotes the direction (such that for the
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FIGURE 13. (Colour online) Turbulent mass-flux velocity measurements across the mixing
layer for the initial condition and each post-shock time. (a,c) Show results for the M= 1.6
case, while (b,d) show results for the M = 2.2 case.

streamwise TMFV the w′ field is used, while u′ is used to calculate the transverse
TMFV) and (4.11) was used to calculate density from the measured concentration
fields. Figure 13 shows how directional TMFV varies across the height of the
interface for the initial condition and at each post-shock time for the low and high
Mach number cases. Here, a subscript of 1 corresponds to the transverse direction
(x) while a subscript of 2 corresponds to the streamwise direction (z). We see from
figure 13 that transverse turbulent mass-flux velocity is generally positive above the
interface midpoint and becomes negative below the interface midpoint, while the
streamwise turbulent mass-flux velocity is generally negative above the interface and
positive below it. The spanwise-averaged streamwise TMFV shows that turbulent
mass flux is upward at the top of the mixing zone and downward below it, indicating
that the mixing zone is growing; however, the values of TMFV decay in time,
indicating that this growth should be slowing down as time progresses. This ‘slowing
growth’ of the interface is consistent with the interface thickness measurements of
§ 4.3. Results from Mohaghar et al. (2017) show similar measurements of the TMFV
in that a strictly monotonic distribution is not observed in the multi-mode case and
the distribution of the TMFV is changing and shifting.

One explanation for this behaviour is that in Richtmyer–Meshkov flows, unlike
Rayleigh–Taylor flows, there is a non-constant (or at least non-impulsive but
perhaps time varying) source for generating baroclinic vorticity. The mechanism
for the development of the fluctuations begins with the shock-wave deposition
of baroclinic vorticity, but there are also nonlinear acoustic effects following the
initial shock–interface interaction. Therefore, although the acceleration history of an
analogous 1-D interface is purely impulsive, the mixing that occurs in the multimode
interface is subject to additional vorticity sources from nonlinear acoustic effects and
bubble-spike development. These effects may be responsible for the redistribution of
the TMFV – about the centre of the mixing width or the centre of mass (Mohaghar
et al. 2017) – and also the observed non-monotonic behaviour. Given enough time,
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FIGURE 14. Reynolds stress measurements at the initial condition. (a) Comparison of
terms in (4.16) for the transverse component of Reynolds stress. (b) The three measured
components of the Reynolds stress across the mixing layer.

such as a much longer shock tube as could be constructed in a numerical simulation,
monotonic behaviour would certainly be expected, so relative to that situation, the
experimental times here are still in an early stage of development. Outside of
the turbulent mixing zone, the TMFV tends towards zero both above and below
the interface in each direction. We also note slightly larger values of turbulent
mass-flux velocity in both directions for the high Mach number case, indicating
greater production of turbulent kinetic energy due to the larger velocities imparted by
the stronger shock.

Turbulent mass-flux velocity measurements can also be used in calculating Reynolds
stresses in the flow. Momentum transport in variable-density turbulence is defined by
the Favre Reynolds stresses,

Rij = 〈ρu′′i u′′j 〉 = 〈ρ〉〈u
′

iu
′

j〉 − 〈ρ〉aiaj + 〈ρ
′u′iu

′

j〉, (4.16)

where double primes denote Favre-averaged velocity fluctuations (Balakumar et al.
2012; Gerashchenko & Prestridge 2015). The present work will explore each of
the three terms on the right-hand side of (4.16) individually, as well as the three
(of six) components of Favre Reynolds stress (henceforth referred to simply as
Reynolds stress) that have been obtained directly through simultaneous measurements
of concentration and velocity. Representative results for each of the three terms
on the right-hand side of the streamwise Reynolds stress component in (4.16) are
shown individually for the initial condition in figure 14(a). Term 1 (〈ρ〉〈u′iu

′

j〉) is the
mean density–velocity correlation, and is clearly the dominant term. Term 2 (〈ρ〉aiaj)
is the mass-flux term and is approximately 250 × smaller than term 1. Term 3
(〈ρ ′u′iu

′

j〉) is the triple correlation term, which is shown to be approximately an order
of magnitude smaller than the mean density–velocity correlation term. A similar trend

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

41
9

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 N

AS
A 

La
ng

le
y 

Re
se

ar
ch

 C
en

te
r,

 o
n 

26
 Ju

n 
20

18
 a

t 1
3:

45
:1

9,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1017/jfm.2018.419
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


568 D. T. Reese and others

in the importance of term 1 over the other two terms has been seen previously by
Balakumar et al. (2012) and Gerashchenko & Prestridge (2015). The effect of the
shear jet used in creating the initial condition is clearly visible in the mass-flux and
triple correlation terms, where the large velocity fluctuations within the jet region
dominate the stresses near the z/h5–95 =−0.4 height.

In addition to viewing individual terms of the Reynolds stress components, the
value of the components themselves can be compared as a function of position across
the turbulent mixing zone; this is shown for the initial condition in figure 14(b). A
comparison of the three measured components of the Reynolds stress tensor shows
that the transverse and streamwise components exhibit a tendency toward zero value
away from the interface, indicating the greatest forces from turbulent fluctuations
are occurring near the centre of the mixing zone. The transverse component (R11)
is shown to dominate at the initial condition due to the horizontal motion of the
shear-layer interface. Finally, the cross-term remains near zero throughout much of
the mixing layer, with generally negative values in the lower portion of the layer
and generally positive values in the top portion. It should be noted that these direct
measurements can also be used to help constrain and validate turbulence models.

The evolution of each component of the Reynolds stresses is shown in figure 15.
A comparison of the three measured components of the Reynolds stress tensor
shows that, following passage of the shock wave, the streamwise component (R22) is
dominant. At early times the interface exhibits a tendency towards zero value away
from the mixing zone, indicating the greatest forces from turbulent fluctuations are
occurring near the centre of the mixing zone. However, as time progresses, a decay
in Reynolds stress is seen at the centre of the mixing layer, while stresses near the
top of the layer begin to grow. This same trend is seen for the transverse Reynolds
stresses. This bias for growth in Rii at the top of the mixing layer is likely related to
the increase seen in PDFs of ξ near ξ = 1, which is attributed to the greater inertia
of the heavy fluid. In other words, more mixing is occurring near the top of the
mixing layer, and with this mixing come increased Reynolds stresses. Finally, the
cross term decays toward zero throughout much of the mixing layer, with generally
positive values in the top portion of the layer and generally negative values in the
lower portion.

4.7. Reynolds number
Both the Taylor and the outer Reynolds numbers can be estimated from the
experiments. For the Taylor Reynolds number, the characteristic length scale is
chosen to be the Taylor microscale and the velocity is the root-mean-square velocity,
such that

Reλ =
urmsλT

ν
, (4.17)

where urms =
√
〈u′2〉 is the root-mean-square velocity using local velocity fluctuations

in the self-similar (transverse) direction, λT is the Taylor microscale and ν is the
kinematic viscosity. To understand the time evolution of the Taylor Reynolds number
in the current experiments, we will first look closer into determining λT and ν in
(4.17).

The Taylor microscale is the length scale at which viscosity will begin to
significantly affect the flow, and it is found here using two methods. In the first, the
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FIGURE 15. (Colour online) The three measured components of the Reynolds stress across
the mixing layer for the M = 1.6 case (a,c,e) and the M = 2.2 case (b,d, f ). From top to
bottom: transverse stresses, streamwise stresses, cross-term stresses.

Taylor microscale is defined based on the curvature of the velocity autocorrelation.
The velocity autocorrelation,

R(r)=

〈
û (x) û (x+ r)

〉〈
(û)2

〉 , (4.18)

is an even function, and is therefore symmetric such that R(−r)= R(r). As such, the
first terms in the Taylor series are

R(r) = 1+
1
2

d2R(0)
dr2

r2 (4.19)

= 1−
r2

λ2
T
. (4.20)

As done by many others (Champagne, Harris & Corrsin 1970; Ramaprabhu &
Andrews 2004; Petersen & Ghandhi 2011; Weber et al. 2014), the Taylor microscale
can then be calculated directly from the curvature of the autocorrelation,

λT =

[
−

1
2

d2R(0)
dr2

]−1/2

. (4.21)
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FIGURE 16. (Colour online) Representative measurements using each of the two methods
employed to calculate the Taylor microscale. Results shown for (a) the autocorrelation
method, where λT is determined by the r-intercept of the osculating parabola fit to the
autocorrelation curve, and (b) the variance method, where the peak of the distribution fit
defines λT .

The osculating parabola is fit using the central seven points of the autocorrelation;
that is the central r= 0 point, the following three points and the corresponding three
points on the −r side of the correlation. This is performed for both the streamwise
and transverse velocities, such that directional λT,i are found, and a total Taylor

microscale is calculated by λT =

√
λ2

T,x + λ
2
T,z. The directional Taylor microscales

using this method are shown in figure 16(a), where the autocorrelations are the
solid lines, the osculating parabolas are the dashed lines, and the directional Taylor
microscales are determined by the r-intercepts of the dashed lines.

Equivalently, the Taylor microscale can be calculated from the variance of the
velocity and the variance of the first derivative of velocity,

λT,x =

 2〈(û)2〉〈(
∂ û
∂x

)2
〉


1/2

, λT,z =

 2〈(ŵ)2〉〈(
∂ŵ
∂z

)2
〉


1/2

. (4.22a,b)

Again, this is calculated in each direction and a single value for the Taylor microscale
is calculated from the square root of the sum of the squares. This method is shown
in figure 16(b), where the peak of the distribution fit defines the directional Taylor
microscale. Results using the autocorrelation method and the variance method are then
averaged to give a nominal λT measurement at the initial condition and at each post-
shock time. Measurements showing the evolution of the Taylor microscale are shown
in figure 17.

The final value needed to determine the Taylor Reynolds number is the kinematic
viscosity, ν. The kinematic viscosity is computed as ν(ξ)=µmix/(ρ

†
2 + (ρ

‡
1 −ρ

†
2)ξ) and

the dynamic viscosity is averaged from the viscosities of each species, weighted by
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2
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FIGURE 17. Taylor-scale measurements as a function of time for the low and high Mach
number cases.

its mole fraction and molecular weight (Reid, Prausnitz & Poling 1987; Weber et al.
2014),

µmix =

∑
i

µiξi
√

MWi∑
i

ξi
√

MWi

. (4.23)

Since the average mole fraction within the mixing layer is ξ ∼ 0.5, ν(ξ) is evaluated
at this value, giving 1.6× 10−5 m2 s−1.

With values determined for each term in the Taylor Reynolds number equation, Reλ
can now be determined at each time in the development of the instability using (4.17).
The Taylor Reynolds number is shown in figure 18 for the low and high Mach number
cases as the dotted lines with circle and square symbols, respectively. Results show a
rapid increase in Reλ following passage of the shock wave, with a larger increase in
Reynolds number for the high Mach number case. With Reλ determined for each post-
shock time, an estimate of the outer-scale Reynolds number can also be found using
the relation Re= (3/20)Re2

λ, which holds for isotropic turbulence (Pope 2000). Outer-
scale Reynolds number results are shown also in figure 18 as solid lines. By showing
the turbulent transition zone shaded in grey (Dimotakis 2000), we note that the flow
just barely passes through this zone by PS4 for the low Mach number case; however,
the flow has passed this transition zone by PS2 for the high Mach number case. This
is consistent with earlier findings in this paper indicating a transition to turbulence
occurring near PS2 for the M = 2.2 case, such as DSC profile measurements and
streamwise global velocity fluctuation distributions.

5. Conclusions
Simultaneous PIV and PLIF experiments were conducted in a shock tube to

obtain concurrent, full-field concentration and velocity field measurements of a
shock-accelerated shear-layer interface. PLIF images were corrected to show mole
fraction, while PIV particle image pairs gave corresponding velocity fields. These
measurements allowed, for the first time in this regime, calculations of turbulence
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100
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Re

FIGURE 18. Taylor Reynolds number (dashed) and outer-scale Reynolds number (solid) as
a function of time. The grey band indicates the threshold for turbulent mixing (Dimotakis
2000).

quantities giving insight into the development of turbulence in a shock-accelerated
mixing layer. Results showed evidence of power-law growth of the mixing layer, as
h̄ ∝ τ 0.34 after adjusting the interface to remove thickness added from large-scale
features. A comparison of mixing-layer thickness definitions has shown that integral
measurements are proportional to threshold measurements of thickness.

The flow is shown to be developing toward turbulence, with more rapid development
for the higher Mach number case. Qualitatively, this is first seen in the concentration
fields, where small-scale structures begin to develop at late times, along with an
increased presence of mixed fluid as demonstrated by more ‘grey’ regions within the
turbulent mixing zone. Quantitative evidence of a transition to turbulence occurring
by the latest time for the low Mach number case, but as early as PS2 for the high
Mach number case was first seen by calculating the density self-correlation across the
mixing layer, where an initial increase of DSC due to large-scale spike and bubble
growth eventually shows a reversal of DSC, indicating greater mixing throughout the
interface due to the development of small-scale flow features.

Transverse velocity fields show the break-up of the rightward-going jet used to
establish the initial condition shear layer, while streamwise velocity fields show the
amplification of alternating upward and downward-travelling gas, which develops into
spike and bubble structures at late times. We find that turbulent mass-flux velocities
show very different behaviour depending on the direction considered, and vary greatly
depending on position across the turbulent mixing zone. TMFV was also shown to be
larger in magnitude by the latest time when accelerated by a stronger shock, indicating
a greater production of turbulent kinetic energy, as well as a tendency towards zero
value outside of the mixing layer. Reynolds stress calculations showed that the mean
density–velocity correlation term is of greatest importance when determining the
mean forces per unit area imposed on the mean flow by the turbulent fluctuations,
which is in agreement with results from previous work. The streamwise component
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of the Reynolds stress was shown to be dominant and, like the transverse component,
has the largest values in the centre of the interface, indicating that the greatest forces
from turbulent fluctuations are occurring near the centre of the mixing zone.

Planar TKE spectra showed a tendency toward a k−5/3 slope in the inertial range,
and a more rapid movement towards this final state for the higher Mach number case,
providing further evidence of a flow developing toward turbulence. A monotonic
increase in energy was seen at the small scales, and acceleration by a stronger shock
has also been shown to increase the relative amount of energy transferred to the small
scales by the latest times. The Taylor microscale was calculated using two methods,
and was used to determine the Taylor Reynolds number for the flow. Outer-scale
Reynolds numbers were obtained from Taylor Reynolds numbers at each time in
the development of the instability, and provided further evidence of a transition to
turbulence occurring by PS4 for the low Mach number experiments, and by as early
as PS2 for the high Mach number case.
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